Background And Purpose: Protein modification by small ubiquitin-like modifier (SUMO) plays a critical role in the pathogenesis of heart diseases. The present study was designed to determine whether ginkgolic acid (GA) as a SUMO-1 inhibitor exerts an inhibitory effect on cardiac fibrosis induced by myocardial infarction (MI).
Experimental Approach: GA was delivered by osmotic pumps in MI mice. Masson staining, electron microscopy (EM) and echocardiography were used to assess cardiac fibrosis, ultrastructure and function. Expression of SUMO-1, PML, TGF-β1 and Pin1 was measured with Western blot or Real-time PCR. Collagen content, cell viability and myofibroblast transformation were measured in neonatal mouse cardiac fibroblasts (NMCFs). Promyelocytic leukemia (PML) protein was over-expressed by plasmid transfection.
Key Results: GA improved cardiac fibrosis and dysfunction, and decreased SUMO-1 expression in MI mice. GA (>20 μM) inhibited NMCF viability in a dose-dependent manner. Nontoxic GA (10 μM) restrained angiotensin II (Ang II)-induced myofibroblast transformation and collagen production. GA also inhibited expression of TGF-β1 mRNA and protein in vitro and in vivo. GA suppressed PML SUMOylation and PML nuclear body (PML-NB) organization, and disrupted expression and recruitment of Pin1 (a positive regulator of TGF-β1 mRNA), whereas over-expression of PML reversed that.
Conclusions And Implications: Inhibition of SUMO-1 by GA alleviated MI-induced heart dysfunction and fibrosis, and the SUMOylated PML/Pin1/TGF-β1 pathway is crucial for GA-inhibited cardiac fibrosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.taap.2018.03.006 | DOI Listing |
Sleep Breath
January 2025
Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China.
Background: Our previous study have demonstrated chronic intermittent hypoxia (CIH) induced cardiomyocyte apoptosis and cardiac dysfunction. However, the molecular mechanisms are complicated and varied. In this study, we first investigated the CaMKIIγ expression and signaling pathway in the pathogenesis of cardiomyocyte apoptosis after CIH.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
January 2025
Division of Pulmonology, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, GA, USA.
Secondhand smoke exposure (SHSe) is a public health threat for people with cystic fibrosis (CF) and other lung diseases. Primary smoking reduces CFTR channel function, the causative defect in CF. We reported that SHSe worsens respiratory and nutritional outcomes in CF by disrupting immune responses and metabolic signaling.
View Article and Find Full Text PDFEndocr Metab Immune Disord Drug Targets
January 2025
Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, China.
Background: Heart failure with preserved ejection fraction (HFpEF) represents a challenging cardiovascular condition characterized by normal systolic function but impaired diastolic performance. Despite its increasing prevalence, therapeutic options remain limited. This study investigated the metabolic effects of canagliflozin, a sodium-glucose cotransporter 2 (SGLT2) inhibitor, on cardiac function and energy metabolism in HFpEF.
View Article and Find Full Text PDFFront Cardiovasc Med
January 2025
Department of Cardiology, Liuzhou Workers' Hospital, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China.
Background: Fibroblasts in the fibrotic heart exhibit a heterogeneous biological behavior. The specific subsets of fibroblasts that contribute to progressive cardiac fibrosis remain unrevealed. Our aim is to identify the heart fibroblast (FB) subsets that most significantly promote fibrosis and the related critical genes as biomarkers for ischemic heart disease.
View Article and Find Full Text PDFCardiovasc Ther
January 2025
Department of Cardiology, The Fourth Affiliated Hospital, Nanjing Medical University, Nanjing, China.
Myocardial infarction (MI), a severe cardiovascular disease, is the result of insufficient blood supply to the myocardium. Despite the improvements of conventional therapies, new approaches are needed to improve the outcome post-MI. Imperatorin is a natural compound with multiple pharmacological properties and potential cardioprotective effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!