Drosophila globin1 is required for maintenance of the integrity of F-actin based cytoskeleton during development.

Exp Cell Res

Department of Genetics, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India. Electronic address:

Published: May 2018

AI Article Synopsis

  • Hemoglobins (Hbs) are conserved proteins with a unique structure known as the "globin fold" and play various biological roles, including oxygen transport.
  • The Drosophila genome has three globin genes, with glob1 necessary for development and the regulation of reactive oxygen species (ROS).
  • This study highlights glob1's role in maintaining F-actin based cytoskeleton integrity during development, showing that reduced glob1 expression leads to abnormalities linked to improperly formed cytoskeletal structures.

Article Abstract

Hemoglobins (Hbs) are evolutionarily conserved small globular proteins with characteristic 3-over-3 α-helical sandwich structure that is typically known as "globin fold". Hbs have been found to be involved in diverse biological functions and the characteristic property of oxygen transportation is relatively a recent adaptation. Drosophila genome possesses three globin genes (glob1, glob2, and glob3) and it was previously reported that adequate expression of glob1 is required for various aspects of development, and also to regulate the cellular level of reactive oxygen species (ROS). The present study illustrates the explicit role of glob1 gene in Drosophila development. We demonstrate a dynamic expression pattern of glob1 in larval tissues which largely concentrate around F-actin rich structures and also co-precipitate. Reduced expression of glob1 leads to developmental abnormalities which appeared to be largely mediated by inappropriately formed F-actin based cytoskeletal structures. Our subsequent analysis in FLP/FRT mediated somatic clones establishes specific role of Drosophila glob1 in maintenance of the integrity of F-actin based cytoskeleton during development. For the first time, we report interaction between Glob1 and actin, and propose a novel role of glob1 in maintenance of F-actin based cytoskeleton in Drosophila.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yexcr.2018.03.005DOI Listing

Publication Analysis

Top Keywords

f-actin based
16
based cytoskeleton
12
maintenance integrity
8
integrity f-actin
8
cytoskeleton development
8
glob1
8
expression glob1
8
role glob1
8
glob1 maintenance
8
drosophila
5

Similar Publications

Introduction: HIV-1 exploits dendritic cells (DCs) to spread throughout the body via specific recognition of gangliosides present on the viral envelope by the CD169/Siglec-1 membrane receptor. This interaction triggers the internalization of HIV-1 within a structure known as the sac-like compartment. While the mechanism underlying sac-like compartment formation remains elusive, prior research indicates that the process is clathrin-independent and cell membrane cholesterol-dependent and involves transient disruption of cortical actin.

View Article and Find Full Text PDF

Assembly of actin-based stereocilia is critical for cochlear hair cells to detect sound. To tune their mechanosensivity, stereocilia form bundles composed of graded rows of ascending height, necessitating the precise control of actin polymerization. Myosin 15 (MYO15A) drives hair bundle development by delivering critical proteins to growing stereocilia that regulate actin polymerization via an unknown mechanism.

View Article and Find Full Text PDF

Dedicator of Cytokinesis 2 regulates cytoskeletal actin dynamics and is essential for platelet biogenesis and functions.

Cardiovasc Res

January 2025

Department of Pharmacology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.

Aims: Dedicator of Cytokinesis 2 (DOCK2), a member of the DOCK family of Guanine nucleotide exchange factors that specifically act on the Rho GTPases including Rac and Cdc42, plays pivotal roles in the regulation of leukocyte homeostasis. However, its functions in platelets remain unknown.

Methods And Results: Using mice with genetic deficiency of DOCK2 (Dock2-/-), we showed that Dock2-/-mice exhibited a macrothrombocytopenic phenotype characterized as decreased platelet count and enlarged platelet size by transmission electron microscopy.

View Article and Find Full Text PDF

Introduction: Inflammation is a vital immune response, tightly orchestrated through both biochemical and biophysical cues. Dysregulated inflammation contributes to chronic diseases, highlighting the need for novel therapies that modulate immune responses with minimal side effects. While several biochemical pathways of inflammation are well understood, the influence of physical properties such as substrate curvature on immune cell behavior remains underexplored.

View Article and Find Full Text PDF

This study aimed to investigate the potential role of Colquhounia Root Tablets against bone destruction in rheumatoid arthritis(RA) and its molecular mechanism. The study used ultra-performance liquid chromatography-mass spectrometry to analyze the major components of Colquhounia Root Tablets and predicted its candidate target gene set based on the major components. The key targets of RA bone destruction were obtained through GeneCards and the Database of Genetics and Medical Literature(OMIM), protein-protein interaction(PPI) network was constructed, and the key targets were identified by topological analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!