Quantum man-in-the-middle attack on the calibration process of quantum key distribution.

Sci Rep

State Key Laboratory of Mathematical Engineering and Advanced Computing, Zhengzhou, Henan, 450001, China.

Published: March 2018

AI Article Synopsis

Article Abstract

Quantum key distribution (QKD) protocol has been proved to provide unconditionally secure key between two remote legitimate users in theory. Key distribution signals are transmitted in a quantum channel which is established by the calibration process to meet the requirement of high count rate and low error rate. All QKD security proofs implicitly assume that the quantum channel has been established securely. However, the eavesdropper may attack the calibration process to break the security assumption of QKD and provide precondition to steal information about the final key successfully. In this paper, we reveal the security risk of the calibration process of a passive-basis-choice BB84 QKD system by launching a quantum man-in-the-middle attack which intercepts all calibration signals and resends faked ones. Large temporal bit-dependent or basis-dependent detector efficiency mismatch can be induced. Then we propose a basis-dependent detector efficiency mismatch (BEM) based faked states attack on a single photon BB84 QKD to stress the threat of BEM. Moreover, the security of single photon QKD systems with BEM is studied simply and intuitively. Two effective countermeasures are suggested to remove the general security risk of the calibration process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5845025PMC
http://dx.doi.org/10.1038/s41598-018-22700-3DOI Listing

Publication Analysis

Top Keywords

calibration process
20
key distribution
12
quantum man-in-the-middle
8
man-in-the-middle attack
8
attack calibration
8
quantum key
8
quantum channel
8
channel established
8
security risk
8
risk calibration
8

Similar Publications

The practical applications of activation-unstable mesoporous metal-organic frameworks (MOFs) are often constrained by their structural instability. However, enhancing their stability could unlock valuable functionalities. Herein, we stabilized the otherwise unstable, post-activated structure of a novel mesoporous Zr(IV)-MOF, NKM-809, which uses a pyridine-containing amphiprotic linker (PPTB).

View Article and Find Full Text PDF

Background: One method for noninvasive and simple urinary microalbumin testing is urine test strips. However, when visually assessing urine test strips, accurate assessment may be difficult due to environmental influences-such as lighting color and intensity-and the physical and psychological influences of the assessor. These complicate the formation of an objective assessment.

View Article and Find Full Text PDF

Background: Although several models have been developed to predict postoperative pneumonia in elderly hip fracture patients, no systematic review of the model quality and clinical applicability has been reported.

Objective: To systematically review and critically appraise existing models for postoperative pneumonia in elderly hip fracture patients.

Design: Systematic review and meta-analysis.

View Article and Find Full Text PDF

Cellular forces regulate an untold spectrum of living processes, such as cell migration, gene expression, and ion conduction. However, a quantitative description of mechanical control remains elusive due to the lack of general, live-cell tools to measure discrete forces between biomolecules. Here we introduce a computational pipeline for force measurement that leverages well-defined, tunable release of a mechanically activated small molecule fluorophore.

View Article and Find Full Text PDF

Microscopic augmented reality calibration with contactless line-structured light registration for surgical navigation.

Med Biol Eng Comput

January 2025

Mechanical Engineering Department, Tianjin University, No. 135, Yaguan Road, Haihe Education Park, Jinnan District, Tianjin City, 300350, China.

The use of AR technology in image-guided neurosurgery enables visualization of lesions that are concealed deep within the brain. Accurate AR registration is required to precisely match virtual lesions with anatomical structures displayed under a microscope. The purpose of this work was to develop a real-time augmented surgical navigation system using contactless line-structured light registration, microscope calibration, and visible optical tracking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!