Background: Organoid technology enables the cultivation of human tissues in a dish. Its precision medicine potential could revolutionize the Cystic Fibrosis (CF) field. We provide a first thematic exploration of the patient perspective on organoid technology to set the further research agenda, which is necessary for responsible development of this ethically challenging technology.
Methods: 23 semi-structured qualitative interviews with 14 Dutch adult CF patients and 12 parents of young CF patients to examine their experiences, opinions, and attitudes regarding organoid technology.
Results: Four themes emerged: (1) Respondents express a close as well as a distant relationship to organoids; (2) the open-endedness of organoid technology sparks hopes and concerns, (3) commercial use evokes cautiousness. (4) Respondents mention the importance of sound consent procedures, long-term patient engagement, responsible stewardship, and stringent conditions for commercial use.
Conclusions: The precision medicine potential of organoid technology can only be realized if the patient perspective is taken adequately into account.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcf.2018.02.004 | DOI Listing |
Nat Cancer
January 2025
Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany.
Circulating tumor cells (CTCs) drive metastasis, the leading cause of death in individuals with breast cancer. Due to their low abundance in the circulation, robust CTC expansion protocols are urgently needed to effectively study disease progression and therapy responses. Here we present the establishment of long-term CTC-derived organoids from female individuals with metastatic breast cancer.
View Article and Find Full Text PDFCell Rep
January 2025
Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200031, China. Electronic address:
Humans are widely exposed to phthalates, a common chemical plasticizer. Previous cohort studies have revealed that maternal exposure to monobutyl phthalate (MBP), a key metabolite of phthalates, is associated with neurodevelopmental defects. However, the molecular mechanism remains unclear.
View Article and Find Full Text PDFCell Mol Life Sci
January 2025
ENT Institute, Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.
Organoid is an ideal in vitro model with cellular heterogeneity and genetic stability when passaging. Currently, organoids are exploited as new tools in a variety of preclinical researches and applications for disease modeling, drug screening, host-microbial interactions, and regenerative therapy. Advances have been made in the establishment of nasal and olfactory epithelium organoids that are used to investigate the pathogenesis of smell-related diseases and cellular/molecular mechanism underlying the regeneration of olfactory epithelium.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Kansas Medical Center, Kansas City, KS, USA.
Background: Mitochondrial dysfunction and Aβ accumulation are hallmarks of Alzheimer's disease (AD). However, the role of these pathologies in Down Syndrome associated Alzheimer's Disease (DSAD) is unknown. Decades of research describe a relationship between mitochondrial function and Aβ production.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
Background: SNX19 is a key player in endolysosomal and autophagy pathways, which have been extensively reported in neuronal dysfunction and neurodegenerative diseases. Although genetic and cellular evidence suggests SNX19 contributes to neuropathology, the underlying mechanisms remain unknown. Here, we propose to study the mechanism in aging postmortem brain tissue at single cell level and model SNX19 in human induced pluripotent stem cell (hiPSCs) derived brain organoids.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!