Population-based and interventional studies have shown that elevated zinc levels can reduce the progression to advanced age-related macular degeneration. The objective of this study was to assess whether elevated extracellular zinc has a direct effect on retinal pigment epithelial cells (RPE), by examining the phenotype and molecular characteristics of increased extracellular zinc on human primary RPE cells. Monolayers of human foetal primary RPE cells were grown on culture inserts and maintained in medium supplemented with increasing total concentrations of zinc (0, 75, 100, 125 and 150 μM) for up to 4 weeks. Changes in cell viability and differentiation as well as expression and secretion of proteins were investigated. RPE cells developed a confluent monolayer with cobblestone morphology and transepithelial resistance (TER) >200 Ω*cm within 4 weeks. There was a zinc concentration-dependent increase in TER and pigmentation, with the largest effects being achieved by the addition of 125 μM zinc to the culture medium, corresponding to 3.4 nM available (free) zinc levels. The cells responded to addition of zinc by significantly increasing the expression of Retinoid Isomerohydrolase (RPE65) gene; cell pigmentation; Premelanosome Protein (PMEL17) immunoreactivity; and secretion of proteins including Apolipoprotein E (APOE), Complement Factor H (CFH), and High-Temperature Requirement A Serine Peptidase 1 (HTRA1) without an effect on cell viability. This study shows that elevated extracellular zinc levels have a significant and direct effect on differentiation and function of the RPE cells in culture, which may explain, at least in part, the positive effects seen in clinical settings. The results also highlight that determining and controlling of available, as opposed to total added, zinc will be essential to be able to compare results obtained in different laboratories.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jtemb.2018.02.028 | DOI Listing |
Cell Death Dis
January 2025
Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
Epithelial-to-mesenchymal transition (EMT) is a critical and complex process involved in normal embryonic development, tissue regeneration, and tumor progression. It also contributes to retinal diseases, such as age-related macular degeneration (AMD) and proliferative vitreoretinopathy (PVR). Although absent in melanoma 2 (AIM2) has been linked to inflammatory disorders, autoimmune diseases, and cancers, its role in the EMT of the retinal pigment epithelium (RPE-EMT) and retinal diseases remains unclear.
View Article and Find Full Text PDFBiomolecules
January 2025
Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
RAD18 is a conserved eukaryotic E3 ubiquitin ligase that promotes genome stability through multiple pathways. One of these is gap-filling DNA synthesis at active replication forks and in post-replicative DNA. RAD18 also regulates homologous recombination (HR) repair of DNA breaks; however, the current literature describing the contribution of RAD18 to HR in mammalian systems has not reached a consensus.
View Article and Find Full Text PDFExp Eye Res
January 2025
Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215000, China; Key Laboratory of Geriatric Diseases and Immunology, Ministry of Education, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, 215123, China. Electronic address:
Due to its unique physiological structure and functions, the eye has received considerable attention in the field of adeno-associated virus (AAV) gene therapy. Inherited retinal degenerative diseases, which arise from pathogenic mutations in mRNA transcripts expressed in the eye's photoreceptor cells or retinal pigment epithelium (RPE), are the most common cause of vision loss. However, current retinal gene therapy mostly involves subretinal injection of therapeutic genes, which treats a limited area, entails retinal detachment, and requires sophisticated techniques.
View Article and Find Full Text PDFPhytomedicine
January 2025
School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Department of Ophthalmology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China. Electronic address:
Background: Resistance to senescence in retinal pigment epithelial (RPE) cells can delay the progression of age-related macular degeneration (AMD). However, the mechanisms underlying RPE cell senescence remain inadequately understood, and effective therapeutic strategies are lacking. While astragaloside IV (Ast) has demonstrated anti-aging properties, its specific effects on RPE cell senescence and potential mechanisms are not yet fully clarified.
View Article and Find Full Text PDFAmyloid β (Aβ) has emerged as a pathophysiological driver in age-related macular degeneration (AMD), emphasizing its significance in the aetiology of this prevalent sight-threatening condition. The multifaceted nature of AMD pathophysiology, presumably involving diverse retinal cascades, corresponds with the complexity of Aβ-induced retinopathy. Therefore, targeting a broad array of pathogenic processes holds promise for therapeutic intervention in AMD-associated retinal pathology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!