WHO reported 10.4 million new tuberculosis (TB) cases and 1.8 million deaths in 2015, making M. tuberculosis the most successful human pathogen with highest mortality among infectious diseases [1,2]. Drug-resistant TB is a major threat to global TB control [2,3]. Recently Torres et al. [4] identified 14 novel substitutions in M. tuberculosis-KatG (the enzyme associated with resistance to isoniazid-an important first-line anti-TB drug) and demonstrated that 12 of the 14 can cause INH-resistance in M. smegmatis. This study presents an in silico structure-based analysis of these 14 amino acid substitutions using homology models and x-ray crystal structures (when available) in M. tuberculosis. Our models demonstrate that several of these mutations cluster around three openings in the KatG tertiary structure which appear to initiate channels to the heme group at the catalytic center of the enzyme. We studied the effects of these mutations on the tertiary structure of KatG, focusing on conformational changes in the three channels in the protein structure. Our results suggest that the 14 novel mutations sufficiently restrict one or more of these access channels, thus potentially preventing INH from reaching the catalytic heme. These observations provide valuable insights into the structure-based origins of INH resistance and provide testable hypotheses for future experimental studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7330162PMC
http://dx.doi.org/10.1016/j.tube.2017.11.007DOI Listing

Publication Analysis

Top Keywords

tertiary structure
8
modeling structural
4
structural origins
4
origins drug
4
drug resistance
4
resistance isoniazid
4
isoniazid key
4
mutations
4
key mutations
4
mutations mycobacterium
4

Similar Publications

Wnt signaling is a critical pathway implicated in cancer development, with Frizzled proteins, particularly FZD10, playing key roles in tumorigenesis and recurrence. This study focuses on the potential of repurposed FDA-approved drugs targeting FZD10 as a therapeutic strategy for nasopharyngeal carcinoma (NPC). The tertiary structure of human FZD10 was constructed using homology modeling, validated by Ramachandran plot and ProQ analysis.

View Article and Find Full Text PDF

Characterization of a novel acidic phospholipase A isolated from the venom of Bothrops mattogrossensis: From purification to structural modeling.

Int J Biol Macromol

December 2024

Laboratory of Cellular Immunology Applied to Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil; Department of Medicine, Federal University of Rondonia (UNIR), Porto Velho, RO, Brazil. Electronic address:

Phospholipases A (PLAs) are highly prevalent in Bothrops snake venom and play a crucial role in inflammatory responses and immune cell activation during envenomation. Despite their significance, the specific role of PLAs from Bothrops mattogrossensis venom (BmV) in inflammation is not fully understood. This study sought to isolate and characterize a novel acidic PLA from BmV, designated BmPLA-A, and to evaluate its effects on human umbilical vein endothelial cells (HUVECs), with a specific focus on cytotoxicity, adhesion, and detachment.

View Article and Find Full Text PDF

Background: Recent studies have highlighted the distinct ratio of PD-1 + Treg/PD-1 + CD8 for prognosis prediction. However, it remains unclear about the association of this ratio and tertiary lymphoid structures (TLS) with prognosis and response to neoadjuvant or conversion therapy in advanced gastric cancer.

Methods: Firstly, fresh postoperative samples from 68 gastric cancer patients in Renji Hospital were collected.

View Article and Find Full Text PDF

Background: Standardized and systematic quality assessments of chronic pain management, particularly among older adult populations, are lacking in resource-limited community settings. A specific set of indicators to evaluate the quality of chronic pain management in this population has yet to be developed. Therefore, the present study constructed a set of indicators to assess the quality of chronic pain management in Chinese community-dwelling older adults, providing a standardized reference and guidance for community health centers to manage chronic pain in this population.

View Article and Find Full Text PDF

A Universal Multi-Epitope Vaccine Design Against Porcine Reproductive and Respiratory Syndrome Virus via Bioinformatics and Immunoinformatics Approaches.

Vet Sci

December 2024

Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China.

Porcine reproductive and respiratory syndrome virus (PRRSV) causes reproductive disorders in sows and severe pneumonia in piglets, alongside immunosuppressive effects on the host. It poses a significant global threat to the swine industry, with no effective control measures currently available due to its complex pathogenesis and high variability. Conventional inactivated and attenuated vaccines provide inadequate protection and carry biosafety risks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!