Background: Oxidative stress in an intracellular environment created by the accumulation of reactive oxygen species results in oxidative damage to biomolecules which ultimately become a hallmark for severe diseases like cancer, aging, diabetes, and cardiovascular and neurodegenerative diseases.
Methods: Various in vitro assays were employed to assess the antioxidant potential of strain, DNA protective activity was demonstrated using DNA nicking assay and cytotoxicity of the extract was evaluated using MTT assay. Further identification of the compounds was done using UPLC analysis.
Results: The extract of Streptomyces cellulosae strain TES17 demonstrated significant antioxidant activity with percentage inhibition of 78.47 ± 0.23, 91.08 ± 0.98 and 82.08 ± 0.93 for DPPH, ABTS and superoxide radical assays at 5 mg/mL, respectively. Total antioxidant and reducing power were found to be 76.93 ± 0.76 and 231.96 ± 0.51 mg AAE/100 mg of dry extract, respectively. Moreover, the extract was shown to inhibit lipid peroxidation upto 67.18 ± 1.9% at 5 mg/mL. TPC and TFC measured in the extract was 55 mg GAE/100 mg and 11.17 ± 4.05 mg rutin/100 mg, respectively. The protective nature of the TES17 extract to oxidative stress induced damaged DNA was shown by percentage of supercoiled DNA i.e. Form I was increased from 26.38 to 38.20% at concentrations ranging from 2 μg to 10 μg. TES17 extract also showed the cytotoxic activity against lung cancer cell line with 74.7 ± 1.33% inhibition whereas, limited toxicity was observed against normal cell line with percentage viability of 87.71 ± 6.66 at same concentration (30 μg/mL) tested. The antioxidant capacity of extract was well correlated with its TPC and TFC and this in turn was in keeping with the UPLC analysis which also revealed the presence of phenolic compounds that were responsible for the antioxidant and cytotoxic potential of S. cellulosae strain TES17.
Conclusions: The present study describes that S. cellulosae strain TES17 isolated from the rhizosphere of Camellia sinensis (tea) plant; produces potent compounds with antioxidant activity, further might be developed into therapeutic drugs to combat oxidative stress.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5845325 | PMC |
http://dx.doi.org/10.1186/s12906-018-2154-4 | DOI Listing |
BMC Plant Biol
August 2024
Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, 21526, Egypt.
Background: Soil-borne plant diseases represent a severe problem that negatively impacts the production of food crops. Actinobacteria play a vital role in biocontrolling soil-borne fungi.
Aim And Objectives: The target of the present study is to test the antagonistic activity of chitinase-producing Streptomyces cellulosae Actino 48 (accession number, MT573878) against Rhizoctonia solani.
Curr Microbiol
April 2023
College of Life Sciences, Key Laborary of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, Guizhou, China.
Wetlands are the most biologically diverse ecosystems on Earth. The isolation of Streptomyces strains from wetlands is helpful to study their diversity and functions in such habitats. In this study, six strains of Streptomyces were isolated from the rhizosphere soil of three plant species in the Huaxi Wetland at Guiyang and were identified as Streptomyces galilaeus, S.
View Article and Find Full Text PDFHeliyon
March 2023
College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China.
Steroids are one of the most widely used groups of medicines presently. There are some steroid drugs that have acquired with the transformation of microorganism. It's indispensability to screen the strain that is able to utilize steroids to generate new products.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
May 2022
Charmo Research Center, Charmo University, Chamchamal 46023, Kurdistan Region-Iraq.
Although the production of the secondary metabolite is frequently restricted, methods to regulate and optimize their synthesis are extremely beneficial. The current study proposes to enhance the production of antibiofilm metabolite in Streptomyces cellulosae (S. cellulosae).
View Article and Find Full Text PDFFront Microbiol
May 2022
Ecobiomaterial Research Laboratory, School of Biological Sciences, Universiti Sains Malaysia, Gelugor, Malaysia.
Rubber-degrading Actinobacteria have been discovered and investigated since 1985. Only recently, through the advancement of genomic sequencing and molecular techniques, genes and pathways involved in rubber degradation are being revealed; however, the complete degradation pathway remains unknown. sp.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!