Purpose: To characterize the optical coherence tomography (OCT) appearances of photoreceptor degeneration in the rhodopsin P23H transgenic rat (line 2) in relation to the histological, ultrastructural, and electroretinography (ERG) findings.
Materials And Methods: Homozygous rhodopsin P23H transgenic albino rats (line 2, very-slow degeneration model) were employed. Using OCT (Micron IV®; Phoenix Research Labs, Pleasanton, CA, USA), the natural course of photoreceptor degeneration was recorded from postnatal day (P) 15 to P 287. The OCT images were qualitatively observed by comparing them to histological and ultrastructural findings at P 62 and P 169. In addition, each retinal layer was quantitatively analyzed longitudinally during degeneration, compared it to that observed in wild type Sprague-Dawley (SD) rats. The relationships between the ERG (full-field combined rod-cone response, 3.0 cds/m2 stimulation) findings and OCT images were also analyzed.
Results: In the qualitative study, the two layers presumably corresponding to the photoreceptor inner segment ellipsoid zone (EZ) and interdigitation zone (IZ) were identified in the P23H rat until PN day 32. However, the photoreceptor inner and outer segment (IS/OS) layer became diffusely hyperreflective on OCT after P 46, and the EZ and IZ zones could no longer be identified on OCT. In contrast, in the SD rats, the EZ and IZ were clearly distinguished until at least P 247. The ultrastructural study showed partial disarrangements of the photoreceptor outer segment discs in the P23H rats at P 62, although a light-microscopic histological study detected almost no abnormality in the outer segment. In the quantitative study, the outer retinal layer including the outer plexiform layer (OPL) and the outer nuclear layer (ONL) became significantly thinner in the P23H rats than in the SD rats after P 71. The thickness of the IS/OS layer was maintained in the P23H rats until P 130, and it became statistically thinner than in the SD rats at P 237. The longitudinal attenuation in the amplitude of the a- and b-waves of ERG was significantly correlated with the thickness of the combined OPL and ONL but not with that of the IS/OS layer.
Conclusion: OCT showed the degenerated photoreceptor IS/OS layer in rhodopsin P23H transgenic rats (line 2) as a diffuse hyperreflective zone, even in the early stage, with the partially disarranged and destabilized OS discs recognizable by ultrastructural assessment but not by a histological study. The amplitude of the a- and b-waves mainly depends on the thickness of the OPL and ONL layer rather than the thickness of the photoreceptor IS/OS layer in P23H rats.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5844545 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0193778 | PLOS |
Invest Ophthalmol Vis Sci
November 2024
Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.
Purpose: Among the genome-editing methods for repairing disease-causing mutations resulting in autosomal dominant retinitis pigmentosa, homology-independent targeted integration (HITI)-mediated gene insertion of the normal form of the causative gene is useful because it allows the development of mutation-agnostic therapeutic products. In this study, we aimed for the rapid optimization and validation of HITI-treatment gene constructs of this approach in developing HITI-treatment constructs for various causative target genes in mouse models of retinal degeneration.
Methods: We constructed the Cas9-driven HITI gene cassettes in plasmid vectors to treat the mouse Rho gene.
bioRxiv
December 2024
Department of Ophthalmology & Visual Sciences and Department of Biochemistry & Molecular Medicine, West Virginia University, Morgantown, WV 26506, United States.
Rod photoreceptor neurons in the retina detect scotopic light through the visual pigment rhodopsin (Rho) in their outer segments (OS). Efficient Rho trafficking to the OS through the inner rod compartments is critical for long-term rod health. Given the importance of protein trafficking to the OS, less is known about the trafficking of rod synaptic proteins.
View Article and Find Full Text PDFPLoS One
October 2024
Department of Ophthalmology, West Virginia University, Morgantown, West Virginia, United States of America.
Neurodegenerative diseases are characterized by the presence of misfolded and aggregated proteins which are thought to contribute to the development of the disease. In one form of inherited blinding disease, retinitis pigmentosa, a P23H mutation in the light-sensing receptor, rhodopsin causes rhodopsin misfolding resulting in complete vision loss. We investigated whether a xenogeneic protein-unfolding ATPase (unfoldase) from thermophilic Archaea, termed PANet, could counteract the proteotoxicity of P23H rhodopsin.
View Article and Find Full Text PDFAm J Ophthalmol
December 2024
GeneScape (M.L., M.G., K.E.M.), Leiden, The Netherlands. Electronic address:
Objective: To provide the most up-to-date clinical prevalence estimate for autosomal dominant retinitis pigmentosa (adRP) patients due to RHO c.68C>A, (p.P23H) in the United States, supported by two independent approaches; literature based meta-analysis of reported patients and population genetics modeling.
View Article and Find Full Text PDFbioRxiv
July 2024
Section of Protein Structure and Function, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health; Bethesda, MD, USA.
Photoreceptor death causes blinding inheritable retinal diseases, such as retinitis pigmentosa (RP). As disease progression often outpaces therapeutic advances, finding effective treatments is urgent. This study focuses on developing a targeted approach by evaluating the efficacy of small peptides derived from pigment epithelium-derived factor (PEDF), known to restrict common cell death pathways associated with retinal diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!