Use of temperature to improve West Nile virus forecasts.

PLoS Comput Biol

Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, United States of America.

Published: March 2018

Ecological and laboratory studies have demonstrated that temperature modulates West Nile virus (WNV) transmission dynamics and spillover infection to humans. Here we explore whether inclusion of temperature forcing in a model depicting WNV transmission improves WNV forecast accuracy relative to a baseline model depicting WNV transmission without temperature forcing. Both models are optimized using a data assimilation method and two observed data streams: mosquito infection rates and reported human WNV cases. Each coupled model-inference framework is then used to generate retrospective ensemble forecasts of WNV for 110 outbreak years from among 12 geographically diverse United States counties. The temperature-forced model improves forecast accuracy for much of the outbreak season. From the end of July until the beginning of October, a timespan during which 70% of human cases are reported, the temperature-forced model generated forecasts of the total number of human cases over the next 3 weeks, total number of human cases over the season, the week with the highest percentage of infectious mosquitoes, and the peak percentage of infectious mosquitoes that on average increased absolute forecast accuracy 5%, 10%, 12%, and 6%, respectively, over the non-temperature forced baseline model. These results indicate that use of temperature forcing improves WNV forecast accuracy and provide further evidence that temperature influences rates of WNV transmission. The findings provide a foundation for implementation of a statistically rigorous system for real-time forecast of seasonal WNV outbreaks and their use as a quantitative decision support tool for public health officials and mosquito control programs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5862506PMC
http://dx.doi.org/10.1371/journal.pcbi.1006047DOI Listing

Publication Analysis

Top Keywords

wnv transmission
16
forecast accuracy
16
temperature forcing
12
human cases
12
wnv
9
west nile
8
nile virus
8
model depicting
8
depicting wnv
8
improves wnv
8

Similar Publications

Dengue fever, caused by the dengue virus (DENV), poses a significant global health challenge, particularly in tropical and subtropical regions. Recent increases in indigenous DENV cases in Europe are concerning, reflecting rising incidence linked to climate change and the spread of mosquitoes. These vectors thrive under environmental conditions like temperature and humidity, which are increasingly influenced by climate change.

View Article and Find Full Text PDF

Flaviviruses, a group of single-stranded RNA viruses spread by mosquitoes or ticks, include several significant neurotropic viruses, such as West Nile virus (WNV), Japanese encephalitis virus (JEV), tick-borne encephalitis virus (TBEV), and Zika virus (ZIKV). These viruses can cause a range of neurological diseases during acute infection, from mild, flu-like symptoms to severe and fatal encephalitis. A total of 20-50% of patients who recovered from acute flavivirus infections experienced long-term cognitive issues.

View Article and Find Full Text PDF

Mosquitoes are important vectors for the transmission of some major infectious diseases of humans, i.e., malaria, dengue, West Nile Virus and Zika virus.

View Article and Find Full Text PDF

Millions of people are annually infected by mosquito-transmitted arboviruses including dengue virus (DENV), West Nile virus (WNV), Zika virus (ZIKV) and chikungunya virus (CHIKV). Insect-specific flaviviruses (ISFs), which only infect mosquitoes and cannot replicate in vertebrates, can offers a potential one health strategy to block the transmission of arboviruses by reducing the mosquito's susceptibility for subsequent arbovirus infections through superinfection exclusion (SIE),. Most SIE studies focus on acute ISF infections in RNAi-deficient C6/36 cells.

View Article and Find Full Text PDF

Hesperidin, a natural flavanone glycoside predominantly found in citrus fruits, has gained attention for its wide-ranging biological activities, including potential insecticidal properties. Culex pipiens, commonly known as the northern house mosquito, is a major vector of several human pathogens, such as the West Nile virus and filariasis, making it a key target in the fight against vector-borne diseases. In this study, we evaluated the larvicidal activity of Hesperidin against Culex pipiens larvae, assessing its potential as an alternative to chemical insecticides.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!