In this study, a multipronged approach of in vitro experiments, in silico simulations, and in vivo studies was developed to evaluate the dissolution, supersaturation, precipitation, and absorption of three formulations of Compound-A, a BCS class 2 weak base with pH-dependent solubility. In in vitro 2-stage dissolution experiments, the solutions were highly supersaturated with no precipitation at the low dose but increasing precipitation at higher doses. No difference in precipitation was observed between the capsules and tablets. The in vitro precipitate was found to be noncrystalline with higher solubility than the crystalline API, and was readily soluble when the drug concentration was lowered by dilution. A gastric transit and biphasic dissolution (GTBD) model was developed to better mimic gastric transfer and intestinal absorption. Precipitation was also observed in GTBD, but the precipitate redissolved and partitioned into the organic phase. In vivo data from the phase 1 clinical trial showed linear and dose proportional PK for the formulations with no evidence of in vivo precipitation. While the in vitro precipitation observed in the 2-stage dissolution appeared to overestimate in vivo precipitation, the GTBD model provided absorption profiles consistent with in vivo data. In silico simulation of plasma concentrations by GastroPlus using biorelevant in vitro dissolution data from the tablets and capsules and assuming negligible precipitation was in line with the observed in vivo profiles of the two formulations. The totality of data generated with Compound-A indicated that the bioavailability differences among the three formulations were better explained by the differences in gastric dissolution than intestinal precipitation. The lack of intestinal precipitation was consistent with several other BCS class 2 basic compounds in the literature for which highly supersaturated concentrations and rapid absorption were also observed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.molpharmaceut.7b01143 | DOI Listing |
Nat Commun
December 2024
Department of Physics and Astronomy, University of Calgary, 2500 University Drive N.W., Calgary, T2N 1N4, AB, Canada.
Patterns of ionospheric luminosity provide a unique window into our complex, coupled space environment. The aurora, for example, indicates plasma processes occurring thousands of km away, depositing immense amounts of energy into our polar ionospheres. Here we show observations of structured continuum emission associated with the dynamic aurora.
View Article and Find Full Text PDFEcol Lett
January 2025
Climate Impacts Research Centre, Department of Ecology and Environmental Sciences, Umeå University, Umeå, Sweden.
Empirical studies worldwide show that warming has variable effects on plant litter decomposition, leaving the overall impact of climate change on decomposition uncertain. We conducted a meta-analysis of 109 experimental warming studies across seven continents, using natural and standardised plant material, to assess the overarching effect of warming on litter decomposition and identify potential moderating factors. We determined that at least 5.
View Article and Find Full Text PDFInt J Nanomedicine
December 2024
Shanxi Medical University School and Hospital of Stomatology; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi, 030001, People's Republic of China.
Purpose: During fixed orthodontic treatment, oral hygiene is difficult to ensure and can easily lead to an imbalance in the oral micro-ecological balance. In this study, based on the adhesive properties of polydopamine (PDA) and the good antimicrobial and remineralization properties of carboxymethyl chitosan (CMC) and xylitol (Xy), new nanocomposites with both antimicrobial and remineralization capabilities were prepared to coat on orthodontic brackets.
Methods: Composite carbon dots (CDs) were synthesized using carboxymethyl chitosan and xylitol, we characterized them and the antimicrobial properties of the CMC-Xy-CDs were investigated by co-cultivation with S.
Surv Geophys
April 2024
Department of Atmospheric and Oceanic Science, University of Wisconsin, Madison, WI 53706 USA.
Accurate diagnosis of regional atmospheric and surface energy budgets is critical for understanding the spatial distribution of heat uptake associated with the Earth's energy imbalance (EEI). This contribution discusses frameworks and methods for consistent evaluation of key quantities of those budgets using observationally constrained data sets. It thereby touches upon assumptions made in data products which have implications for these evaluations.
View Article and Find Full Text PDFAsian Pac J Cancer Prev
December 2024
Division of Gastroenterology and Hepatology, Faculty of Medicine Vajira Hospital, Navamindradhiraj University. 681 Samsen Road, Dusit District 10300, Bangkok, Thailand.
Background/aims: Variations in cirrhosis management practices and care quality affect patient prognoses and outcomes. We aimed to evaluate the number of successful cirrhosis care processes and the relationship between the quality statement implementation and clinical outcomes in patients with cirrhosis.
Methods: This retrospective cohort study included hospitalized patients with cirrhosis.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!