Evaluation of Drug Transport in MDCKII-Wild Type, MDCKII-MDR1, MDCKII-BCRP and Caco-2 Cell Lines.

Curr Pharm Biotechnol

Eurofins Advinus Therapeutics Limited, Bengaluru - 560058, Karnataka, India.

Published: August 2018

Background: Drug transporters function as gatekeepers and modulate drug access into body and various tissues. Thus, a thorough and precise understanding of transporter liability for compound uptake and efflux is critical during drug development.

Methods: In the present study, we assessed the apparent permeability (Papp) and compared efflux ratio of various compounds in stably transfected Madin-Darby Canine Kidney (MDCKII) cells overexpressing human P-gp (MDCKII-MDR1), human BCRP (MDCKII-BCRP), wild-type (MDCKII-WT), and Caco-2 cell monolayers.

Results: We observed that quinidine, a substrate for MDR1 transporter, showed efflux ratio (Papp B-A/ Papp A-B) of 838 in MDCKII-MDR1 cells which plummeted to 14 in presence of verapamil, a known inhibitor of MDR1. With MDCKII-WT cells, Papp of quinidine dropped from 2 to 1, in the presence of verapamil. Caco-2 cells showed a diminutive decrease in efflux ratio of quinidine from 2.5 to 1.6 by verapamil. Prazosin and dantrolene were evaluated in MDCKII-BCRP cells and were found to have 80-fold higher efflux ratio compared to MDCKII-WT cells. In Caco-2 cells, prazosin and dantrolene showed efflux ratio of 4 and 2, respectively. Rhodamine-123, a fluorogenic probe substrate of MDR1 showed an efflux ratio of 4 in Caco-2 cells and BCRP substrate estrone-3-sulphate showed an efflux ratio of 7. In presence of BCRP inhibitor fumitremorgin-c, the efflux ratio of estrone-3-sulfate dropped to 1 in Caco-2 cells.

Conclusion: The very high efflux ratios of MDR1 and BCRP substrates in transfected MDCKII cells clearly demonstrate the potential usefulness of these models to provide more definitive data to evaluate the transporter involvement compared to Caco-2 or MDCKII-WT cells.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1389201019666180308091855DOI Listing

Publication Analysis

Top Keywords

efflux ratio
32
mdckii-wt cells
12
caco-2 cells
12
efflux
10
cells
10
caco-2 cell
8
ratio
8
mdckii cells
8
substrate mdr1
8
presence verapamil
8

Similar Publications

Ion homeostasis and coordinated salt tolerance mechanisms in a barley (Hordeum vulgare L.)doubled haploid line.

BMC Plant Biol

January 2025

Shanghai Key Laboratory of Agricultural Genetics and Breeding, Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms of Ministry of Agriculture and Rural Affairs (Shanghai), Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China.

Salinization poses a significant challenge in agriculture. Identifying salt-tolerant plant germplasm resources and understanding their mechanisms of salt tolerance are crucial for breeding new salt-tolerant plant varieties. However, one of the primary obstacles to achieving this goal in crops is the physiological complexity of the salt-tolerance trait.

View Article and Find Full Text PDF

Dynamic impact of polyethylene terephthalate nanoplastics on antibiotic resistance and microplastics degradation genes in the rhizosphere of Oryza sativa L.

J Hazard Mater

January 2025

Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin 541004, China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China. Electronic address:

This study examined the effects of polyethylene terephthalate (PET) nanoplastics on the rhizosphere of Oryza sativa L., focusing on dynamic changes and interactions among microbial communities, antibiotic resistance genes (ARGs) and microplastic degradation genes (MDGs). PET exposure altered the structure and function of soil microbial, enabling specific microbial groups to thrive in polluted environments.

View Article and Find Full Text PDF

Continued efforts to discover new antibacterial molecules are critical to achieve a robust pre-clinical pipeline for new antibiotics. Screening of compound or natural product extract libraries remains a widespread approach and can benefit from the development of whole cell assays that are robust, simple and versatile, and allow for high throughput testing of antibacterial activity. In this study, we created and validated two bioluminescent reporter strains for high-throughput screening, one in Pseudomonas aeruginosa, and another in a hyperporinated and efflux-deficient Escherichia coli.

View Article and Find Full Text PDF

Purpose: Nanoparticles are highly efficient vectors for ferrying contrast agents across cell membranes, enabling ultra-sensitive in vivo tracking of single cells with positron emission tomography (PET). However, this approach must be fully characterized and understood before it can be reliably implemented for routine applications.

Methods: We developed a Langmuir adsorption model that accurately describes the process of labeling mesoporous silica nanoparticles (MSNP) with Ga.

View Article and Find Full Text PDF

Background: Multidrug resistance (MDR), mainly caused by ATP-binding cassette transporters (ABCTs) efflux, makes it difficult for many anticancer drugs to treat breast cancer (BC). Phytochemicals can reverse cancer's MDR by modifying ABC transporter expression and function, as well as working synergistically with anticancer drugs to target other molecules. The reversal effect of the isoquinoline alkaloid coptisine (COP) was assessed on four breast cell lines; Two sensitive MCF-7 cell lines with positive estrogen, androgen, progesterone, and glucocorticoid receptors, as well as MDB-MB-231 cells with negative estrogen, progesterone, and HER2 receptors, and two doxorubicin-resistant cell lines, MCF-7/ADR and MDB-MB-231/ADR.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!