Degradation rate of DNA scaffolds and bone regeneration.

J Biomed Mater Res B Appl Biomater

Research Center for Regenerative Medicine, Fukuoka Dental College, Fukuoka, Japan.

Published: January 2019

Scaffolds implanted into bone defect sites must achieve optimal biodegradation rates while appropriately filling the void as new bone formation progresses. We recently developed a unique biomaterial consisting of salmon deoxyribose nucleic acid (DNA) and protamine, which can be used as an osteoconductive scaffold for tissue engineering. The aim of the present study was to elucidate how the degradation rate of the scaffold affects bone regeneration. We examined the relationships between the degradation rate of salmon DNA scaffolds and new bone formation using a rat skin flank subcutaneous model and rat calvarial defect model. The degradation rates of the scaffolds were proportional to the durations of pretreatment with ultraviolet (UV) light irradiation. The biodegradation rates of the scaffolds were also dependent on the duration of UV irradiation, as tested a subcutaneous tissue implantation. Scaffolds irradiated with UV light for 0.5 h maintained gradual biodegradation of phosphate compared with scaffolds irradiated for 0 or 3 h. In the calvarial defect model, we found that new bone formation was higher in rats treated with scaffolds irradiated with UV light for 0.5 h compared with those irradiated with UV light for 0 or 3.0 h. The present results suggest that bioengineering of scaffolds for biodegradation is important to regenerate bone. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 107B: 122-128, 2019.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.b.34102DOI Listing

Publication Analysis

Top Keywords

degradation rate
12
bone formation
12
scaffolds irradiated
12
irradiated light
12
scaffolds
9
dna scaffolds
8
scaffolds bone
8
bone regeneration
8
biodegradation rates
8
calvarial defect
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!