The oxygen reduction reaction (ORR) is under intense research due to its significance in energy storage and conversion processes. Recent studies show that interconnected and hierarchically porous structures can further enhance ORR kinetics as well as catalyst durability, but their preparation can be quite time and/or chemical consuming. Here, a simple approach is reported to prepare such complex structures by pyrolyzing composites containing NaCl and ZIF-8. The templating effect of molten NaCl connects ZIF-8 particles into web-like carbon networks. During ORR activity measurements, it achieves a 0.964 V onset potential and a 38 mV dec Tafel slope, which are comparable to those of the benchmark Pt/C (0.979 V and 40 mV dec ). Due to the metal-free feature, this catalyst exhibits a 16 mV shift in half-wave potential after a 10 000-cycle durability test, which is only 60% of that of Pt/C. The catalyst is also tested in Zn-air batteries and the assemblies are able to work at above 1.2 V for 140 h, which triples the life held by those with Pt/C. This study demonstrates a facile strategy to prepare metal-free ORR catalysts with interconnectivity and hierarchical porosity, and proves their great potentials in ORR catalysis and Zn-air batteries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.201704169 | DOI Listing |
Biochim Biophys Acta Mol Basis Dis
January 2025
MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, Department of Bioinformatics and Computational Biology, School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China; Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou 215123, China; Key Laboratory of Alkene-carbon Fibres-based Technology & Application for Detection of Major Infectious Diseases, Soochow University, Suzhou 215123, China; Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, China. Electronic address:
Cancer, a heterogeneous disease, presents significant challenges for drug development due to its complex etiology. Drug repurposing, particularly through network medicine approaches, offers a promising avenue for cancer treatment by analyzing how drugs influence cellular networks on a systemic scale. The advent of large-scale proteomics data provides new opportunities to elucidate regulatory mechanisms specific to cancer subtypes.
View Article and Find Full Text PDFSci China Life Sci
January 2025
CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
Many alpine ecosystems are undergoing vegetation degradation because of global changes, which are affecting ecosystem functioning and biodiversity. The ecological consequences of alpine pioneer community degradation have been less studied than glacial retreat or meadow degradation in alpine ecosystems. We document the comprehensive responses of microbial community characteristics to degradation processes using field-based sampling, conduct soil microcosm experiments to simulate the effects of global change on microorganisms, and explore their relationships to ecosystem functioning across stages of alpine pioneer community degradation.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2025
Key Laboratory of Marine Ranching, Ministry of Agriculture and Rural Affairs, China, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China.
The construction of artificial reefs (ARs) is an effective way to restore habitats and increase and breed fishery resources in marine ranches. However, studies on the impacts of ARs on the structure, function, and assembly patterns of the bacterial community (BC), which is important in biogeochemical cycles, are lacking. The compositions, diversities, assembly patterns, predicted functions, and key environmental factors of the attached and free-living microbial communities in five-year ARs (O-ARs) and one-year ARs (N-ARs) in Fangchenggang, China, were analyzed via 16S rRNA gene sequencing.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Department of Botany, Aligarh Muslim University, Aligarh 202002, India.
Plants face a range of environmental stresses, such as heat and drought, that significantly reduce their growth, development, and yield. Plants have developed complex signaling networks to regulate physiological processes and improve their ability to withstand stress. The key regulators of plant stress responses include polyamines (PAs) and gaseous signaling molecules (GSM), such as hydrogen sulfide (HS), nitric oxide (NO), methane (CH), carbon monoxide (CO), carbon dioxide (CO), and ethylene (ET).
View Article and Find Full Text PDFPlants (Basel)
January 2025
Xinjiang Key Laboratory of Clean Conversion and High Value Utilization of Biomass Resources, Yili Normal University, Yining 835000, China.
The pervasive presence of microplastics (MPs) in agroecosystems poses a significant threat to soil health and plant growth. This study investigates the effects of varying concentrations and sizes of polystyrene microplastics (PS-MPs) on the L.'s height, dry weight, antioxidant enzyme activities, soil physicochemical properties, and rhizosphere microbial communities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!