A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 144

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1002
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3142
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Development of a mixed-species biofilm model and its virulence implications in device related infections. | LitMetric

It is becoming increasingly accepted that to understand and model the bacterial colonization and infection of abiotic surfaces requires the use of a biofilm model. There are many bacterial colonizations by at least two primary species, however this is difficult to model in vitro. This study reports the development of a simple mixed-species biofilm model using strains of two clinically significant bacteria: Staphylococcus aureus and Pseudomonas aeruginosa grown on nanoporous polycarbonate membranes on nutrient agar support. Scanning electron microscopy revealed the complex biofilm characteristics of two bacteria blending in extensive extracellular matrices. Using a prototype wound dressing which detects cytolytic virulence factors, the virulence secretion of 30 single and 40 mixed-species biofilms was tested. P. aeruginosa was seen to out-compete S. aureus, resulting in a biofilm with P. aeruginosa dominating. In situ growth of mixed-species biofilm under prototype dressings showed a real-time correlation between the viable biofilm population and their associated virulence factors, as seen by dressing fluorescent assay. This paper aims to provide a protocol for scientists working in the field of device related infection to create mixed-species biofilms and demonstrate that such biofilms are persistently more virulent in real infections. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 107B: 129-137, 2019.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.b.34103DOI Listing

Publication Analysis

Top Keywords

mixed-species biofilm
12
biofilm model
12
model bacterial
8
virulence factors
8
mixed-species biofilms
8
biofilm
7
model
5
development mixed-species
4
virulence
4
model virulence
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!