A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Nanoparticles for Protein Sensing in Primary Containers: Interaction Analysis and Application. | LitMetric

Nanoparticles for Protein Sensing in Primary Containers: Interaction Analysis and Application.

AAPS PharmSciTech

Unidad de Investigación y Desarrollo, Probiomed, S.A. de C.V, Cruce de carreteras Acatzingo-Zumpahuacán S/N, C.P. 52400, Tenancingo, Estado de México, México.

Published: May 2018

Silver nanoparticles (AgNPs) are known to interact with proteins, leading to modifications of the plasmonic absorption that can be used to monitor this interaction, entailing a promising application for sensing adsorption of therapeutic proteins in primary containers. First, transmission electron microscopy in combination with plasmonic absorption and light scattering responses were used to characterize AgNPs and protein-AgNP complexes, including its concentration dependence, using two therapeutic molecules as models: a monoclonal antibody (mAb) and a synthetic copolymer (SC). Upon interaction, a protein corona was formed around AgNPs with the consequent shifting and broadening of their characteristic surface plasmon resonance (SPR) band (400 nm) to 410 nm and longer wavelenghts. Additional studies revealed secondary and three-dimensional structure modifications of model proteins upon interaction with AgNPs by circular dichroism and fluorescence techniques, respectively. Based on the modification of the SPR condition of AgNPs upon interaction with proteins, we developed a novel protein-sensing application of AgNPs in primary containers. This strategy was used to conduct a compatibility assessment of model proteins towards five commercially available prefillable glass syringe (PFS) models. mAb- and SC-exposed PFSs showed that 74 and 94% of cases were positive for protein adsorption, respectively. Interestingly, protein adsorption on 15% of total tested PFSs was negligible (below the nanogram level). Our results highlight the need of a case-by-case compatibility assessment of therapeutic proteins and their primary containers. This strategy has the potential to be easily applied on other containers and implemented during early-stage product development by pharmaceutical companies and for routine use during batch release by packaging manufacturers.

Download full-text PDF

Source
http://dx.doi.org/10.1208/s12249-018-0983-6DOI Listing

Publication Analysis

Top Keywords

primary containers
16
plasmonic absorption
8
therapeutic proteins
8
proteins primary
8
model proteins
8
containers strategy
8
compatibility assessment
8
protein adsorption
8
agnps
6
proteins
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!