A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Automated diabetic retinopathy detection in smartphone-based fundus photography using artificial intelligence. | LitMetric

Automated diabetic retinopathy detection in smartphone-based fundus photography using artificial intelligence.

Eye (Lond)

Dr. Mohan's Diabetes Specialities Centre & Madras Diabetes Research Foundation, WHO Collaborating Centre for Noncommunicable Diseases Prevention and Control, IDF Centre of Excellence in Diabetes Care & ICMR Centre for Advanced Research on Diabetes, Chennai, Tamil Nadu, India.

Published: June 2018

Objectives: To assess the role of artificial intelligence (AI)-based automated software for detection of diabetic retinopathy (DR) and sight-threatening DR (STDR) by fundus photography taken using a smartphone-based device and validate it against ophthalmologist's grading.

Methods: Three hundred and one patients with type 2 diabetes underwent retinal photography with Remidio 'Fundus on phone' (FOP), a smartphone-based device, at a tertiary care diabetes centre in India. Grading of DR was performed by the ophthalmologists using International Clinical DR (ICDR) classification scale. STDR was defined by the presence of severe non-proliferative DR, proliferative DR or diabetic macular oedema (DME). The retinal photographs were graded using a validated AI DR screening software (EyeArt) designed to identify DR, referable DR (moderate non-proliferative DR or worse and/or DME) or STDR. The sensitivity and specificity of automated grading were assessed and validated against the ophthalmologists' grading.

Results: Retinal images of 296 patients were graded. DR was detected by the ophthalmologists in 191 (64.5%) and by the AI software in 203 (68.6%) patients while STDR was detected in 112 (37.8%) and 146 (49.3%) patients, respectively. The AI software showed 95.8% (95% CI 92.9-98.7) sensitivity and 80.2% (95% CI 72.6-87.8) specificity for detecting any DR and 99.1% (95% CI 95.1-99.9) sensitivity and 80.4% (95% CI 73.9-85.9) specificity in detecting STDR with a kappa agreement of k = 0.78 (p < 0.001) and k = 0.75 (p < 0.001), respectively.

Conclusions: Automated AI analysis of FOP smartphone retinal imaging has very high sensitivity for detecting DR and STDR and thus can be an initial tool for mass retinal screening in people with diabetes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5997766PMC
http://dx.doi.org/10.1038/s41433-018-0064-9DOI Listing

Publication Analysis

Top Keywords

diabetic retinopathy
8
fundus photography
8
artificial intelligence
8
smartphone-based device
8
specificity detecting
8
stdr
5
automated diabetic
4
retinopathy detection
4
detection smartphone-based
4
smartphone-based fundus
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!