Epigenetic deregulation, such as the reduction of histone acetylation levels, is thought to be causally linked to various maladies associated with aging. Consequently, histone deacetylase inhibitors are suggested to serve as epigenetic therapy by increasing histone acetylation. However, previous work suggests that many non-histone proteins, including metabolic enzymes, are also acetylated and that post transitional modifications may impact their activity. Furthermore, deacetylase inhibitors were recently shown to impact the acetylation of a variety of proteins. By utilizing a novel technique to measure oxygen consumption rate from whole living tissue, we demonstrate that treatment of whole living fly heads by the HDAC/KDAC inhibitors sodium butyrate and Trichostatin A, induces a rapid and transient increase of oxygen consumption rate. In addition, our study indicates that the rate increase is markedly attenuated in midlife fly head tissue. Overall, our data suggest that HDAC/KDAC inhibitors may induce enhanced mitochondrial activity in a rapid manner. This observed metabolic boost provides further, but novel evidence, that treating various maladies with deacetylase inhibitors may be beneficial.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5843646 | PMC |
http://dx.doi.org/10.1038/s41598-018-22674-2 | DOI Listing |
Med Phys
January 2025
OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.
Background: Previous studies have shown that in-beam magnetic resonance imaging (MRI) can be used to visualize a proton beam during the irradiation of liquid-filled phantoms. The beam energy- and current-dependent local image contrast observed in water was identified to be predominantly caused by beam-induced buoyant convection and associated flow effects. Besides this flow dependency, the MR signal change was found to be characterized by a change in the relaxation time of water, hinting at a radiochemical contribution, which was hypothesized to lie in oxygen depletion-evoked relaxation time lengthening.
View Article and Find Full Text PDFTrop Anim Health Prod
January 2025
Department of Agroindustrial Science and Technology, Federal University of Pelotas, Rio Grande Do Sul, Brazil.
During the harvest of Ilex paraguariensis, approximately 2-5 tons per hectare of thick stems are left on the soil surface. The outer portion of these stems, referred to as the coproduct, constitutes 30% of the total residue mass. Although this coproduct has been partially characterized in terms of its phytochemical profile, its technological applications remain unexplored.
View Article and Find Full Text PDFNEJM Evid
February 2025
Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas.
AbstractBecause symptoms of cardiopulmonary disease often occur with exertion, cardiopulmonary exercise testing (CPET) has a unique role in the assessment of patient symptoms, disease severity, prognosis, and response to therapy. In addition to the evaluation of cardiovascular and pulmonary physiology, CPET provides an assessment of the interaction of the cardiovascular and pulmonary systems with the musculoskeletal, nervous, and hematological systems. In this article, we review key CPET variables, protocols, and clinical indications.
View Article and Find Full Text PDFJ Cachexia Sarcopenia Muscle
February 2025
Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea.
Background: Sarcopenia, characterized by a gradual decline in skeletal muscle mass and function with age, significantly impacts both quality of life and mortality. Autophagy plays a crucial role in maintaining muscle health. There is growing interest in leveraging autophagy to mitigate muscle ageing effects.
View Article and Find Full Text PDFCirc Heart Fail
January 2025
Bruce Rapport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel (I.R.H., N.K., C.B., O.C.).
Background: The therapeutic armamentarium for heart failure with preserved ejection fraction (HFpEF) remains notably constrained. A factor contributing to this problem could be the scarcity of in vitro models for HFpEF, which hinders progress in developing new therapeutic strategies. Here, we aimed at developing a novel, comorbidity-inspired, human, in vitro model for HFpEF.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!