Expanding the phenotypic and genetic spectrum of radioulnar synostosis associated hematological disease.

Haematologica

Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Barts NHS Trust, UK.

Published: July 2018

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6029530PMC
http://dx.doi.org/10.3324/haematol.2017.183855DOI Listing

Publication Analysis

Top Keywords

expanding phenotypic
4
phenotypic genetic
4
genetic spectrum
4
spectrum radioulnar
4
radioulnar synostosis
4
synostosis associated
4
associated hematological
4
hematological disease
4
expanding
1
genetic
1

Similar Publications

Mitochondrial membrane protein-associated neurodegeneration (MPAN) is a rare neurodegenerative disorder characterized by spastic paraplegia, parkinsonism and psychiatric and/or behavioral symptoms caused by variants in gene encoding chromosome-19 open reading frame-12 (C19orf12). We present here seven patients from six unrelated families with detailed clinical, radiological, and genetic investigations. Childhood-onset patients predominantly had a spastic ataxic phenotype with optic atrophy, while adult-onset patients were presented with cognitive, behavioral, and parkinsonian symptoms.

View Article and Find Full Text PDF

Background: Male EBP disorder with neurologic defects (MEND syndrome) is an extremely rare disorder with a prevalence of less than 1/1,000,000 individuals worldwide. It is inherited as an X-linked recessive disorder caused by impaired sterol biosynthesis due to nonmosaic hypomorphic EBP variants. MEND syndrome is characterized by variable clinical manifestations including intellectual disability, short stature, scoliosis, digital abnormalities, cataracts, and dermatologic abnormalities.

View Article and Find Full Text PDF

Background: Idiopathic pulmonary fibrosis (IPF) is a fibrosing interstitial pneumonia with restrictive ventilation. Recently, the structural and functional defects of small airways have received attention in the early pathogenesis of IPF. This study aimed to elucidate the characteristics of small airway epithelial dysfunction in patients with IPF and explore novel therapeutic interventions to impede IPF progression by targeting the dysfunctional small airways.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD), characterized by significant brain volume reduction, is influenced by genetic predispositions related to brain volumetric phenotypes. While genome-wide association studies (GWASs) have linked brain imaging-derived phenotypes (IDPs) with AD, existing polygenic risk scores (PRSs) based models inadequately capture this relationship. We develop BrainNetScore, a network-based model enhancing AD risk prediction by integrating genetic associations between multiple brain IDPs and AD incidence.

View Article and Find Full Text PDF

Background: Preclinical animal models are essential for the development of effective treatments. For instance, the 5xFAD mouse model successfully represents the pathophysiology of Alzheimer's disease (AD). Expression of humanized APP (K670N/M671L - Swedish, I716V - Florida, V717I - London) and PSEN1 (M146L and L286V), found in early onset AD patients, induces the production of amyloid-β 42 (Aβ42) and amyloid deposition, gliosis, and progressive neuronal loss.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!