Mild traumatic brain injury (mTBI) often presents with cognitive complaints including difficulty with attention and concentration. As these symptoms resemble those of ADHD, stimulants may be a potential treatment for mTBI. This review evaluates the literature on the use of stimulants for the treatment of mTBI. A systematic evaluation of the literature using six databases: Ovidmedline, Pubmed, psychINFO, CINAH, Embase, and Cochrane. Broad search terms were used and studies were included that evaluate the use of stimulant and stimulant-like medications in the mTBI population. Data extracted included stimulant type and dosing, symptoms targeted, outcomes, safety and tolerability, and if the study population had ADHD. Nine studies were identified that met the inclusion criteria. Immediate release methylphenidate and amantadine were used for treatment. Methylphenidate had some impact on attention, fatigue, and depression. However, due to the limited number of studies and heterogeneity of study populations, symptoms targeted, and outcome measures used, meaningful conclusions regarding the effect of stimulants in mTBI could not be made. No study evaluated for the presence of ADHD within the study population, despite stimulants being the mainstay treatment for ADHD. PProspective studies on the use of stimulants in mTBI, that evaluate participants for a diagnosis of ADHD, are needed.

Download full-text PDF

Source
http://dx.doi.org/10.1177/1087054718759752DOI Listing

Publication Analysis

Top Keywords

mild traumatic
8
traumatic brain
8
brain injury
8
treatment mtbi
8
symptoms targeted
8
study population
8
stimulants mtbi
8
mtbi
6
adhd
5
stimulants
5

Similar Publications

Objective: Pediatric traumatic brain injury (TBI) represents a significant public health concern and source of resource utilization. The aim of this study was to establish the ability of the previously published pediatric Brain Injury Guidelines (pBIG) to identify patients with traumatic intracranial hemorrhage (ICH) who might not require routine repeat neuroimaging, neurosurgical consultation, or hospital admission in a large level I and level II trauma cohort.

Methods: Pediatric patients who presented with traumatic ICH between 2018 and 2022 at the included institutions were retrospectively reviewed and sorted into pBIG categories using clinical and radiographic criteria.

View Article and Find Full Text PDF

The negative impact of repeated-mild traumatic brain injury (rmTBI) is profoundly seen in circadian-disrupted individuals. The unrelenting inflammation, glial activation, and gut dysbiosis are key neuropathological aberrations in the aftermath of rmTBI. In this study, we examined the impact of chitosan lactate (CL) on circadian disturbance (CD) + rmTBI-generated neurological dysfunctions and its prebiotic response on the gut-brain axis.

View Article and Find Full Text PDF

Background: Traumatic brain injury (TBI) is recognized as one major, potentially modifiable risk factor for neurodegenerative disease (NDD). Autopsy studies describe a range of neuropathologies in a proportion of individuals surviving late after TBI, most frequently the tau associated pathology, chronic traumatic encephalopathy neuropathologic change (CTE-NC). In addition to tau, other NDD pathologies are described.

View Article and Find Full Text PDF

Background: The misfolding and aggregation of the tau protein into neurofibrillary tangles constitute a central feature of tauopathies. Traumatic brain injury (TBI) has emerged as a potential risk factor, triggering the onset and progression of tauopathies. Our previous research revealed distinct polymorphisms in soluble tau oligomers originating from single versus repetitive mild TBIs.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

VA Boston Healthcare System, Boston, MA, USA.

Background: T-cell infiltration into the brain parenchyma is associated with hyperphosphorylated tau (p-tau) accumulation in neurodegenerative diseases. Chronic traumatic encephalopathy (CTE) is a progressive tauopathy caused by exposure to repetitive head impacts (RHI). CTE is defined by the perivascular accumulation of p-tau at the cortical sulcal depths and can be stratified into mild and severe pathological stages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!