We demonstrate fiber nonlinearity mitigation by using multiple optical phase conjugations (OPCs) in the WDM transmission systems of both 8 × 32-Gbaud PDM QPSK channels and 8 × 32-Gbaud PDM 16-QAM channels, showing improved performance over a single mid-span OPC and no OPC in terms of nonlinear threshold and a best achievable Q factor after transmission. In addition, after an even number of OPCs, the signal wavelength can be preserved after transmission. The performance of multiple OPCs for fiber nonlinearity mitigation was evaluated independently for WDM PDM QPSK signals and WDM PDM 16-QAM signals. The technique of multiple OPCs is proved to be transparent to modulation formats and effective for different transmission links. In the WDM PDM QPSK transmission system over 3600 km, by using multiple OPCs the nonlinear threshold (i.e. optimal signal launched power) was increased by ~5 dB compared to the case of no OPC and increased by ~2 dB compared to the case of mid-span OPC. In the WDM PDM 16-QAM transmission system over 912 km, by using the multiple OPCs the nonlinear threshold was increased by ~7 dB compared to the case of no OPC and increased by ~1 dB compared to the case of mid-span OPC. The improvements in the best achievable Q factors were more modest, ranging from 0.2 dB to 1.1 dB for the results presented.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.25.001618DOI Listing

Publication Analysis

Top Keywords

multiple opcs
16
wdm pdm
16
increased compared
16
compared case
16
fiber nonlinearity
12
nonlinearity mitigation
12
pdm qpsk
12
pdm 16-qam
12
mid-span opc
12
nonlinear threshold
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!