A scalable platform for on-chip optical quantum networks will rely on standard top-down nanofabrication techniques and solid-state emitters with long coherence times. We present a new hybrid platform that integrates amorphous silicon photonic waveguides and microresonators fabricated on top of a yttrium orthosilicate substrate doped with erbium ions. The quality factor of one such resonator was measured to exceed 100,000 and the ensemble cooperativity was measured to be 0.54. The resonator-coupled ions exhibited spontaneous emission rate enhancement and increased coupling to the input field, as required for further development of on-chip quantum light-matter interfaces.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.25.002863 | DOI Listing |
Sci Rep
January 2025
Laser Research Center, Vilnius University, Saulėtekio Avenue 10, LT-10223, Vilnius, Lithuania.
We present a comparative experimental study of supercontinuum generation in undoped scintillator crystals: bismuth germanate (BGO), yttrium orthosilicate (YSO), lutetium oxyorthosilicate (LSO), lutetium yttrium oxyorthosilicate (LYSO) and gadolinium gallium garnet (GGG), pumped by 180 fs fundamental harmonic pulses of an amplified Yb:KGW laser. In addition to these materials, experiments in yttrium aluminium garnet (YAG), potassium gadolinium tungstate (KGW) and lithium tantalate (LT) were performed under identical experimental settings (focusing geometry and sample thickness), which served for straightforward comparison of supercontinuum generation performances. The threshold and optimal (that produces optimized red-shifted spectral extent) pump pulse energies for supercontinuum generation were evaluated from detailed measurements of spectral broadening dynamics.
View Article and Find Full Text PDFMed Phys
November 2024
Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
Med Phys
January 2025
Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China.
J Xray Sci Technol
December 2024
Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, China.
Background: The development of photon-counting CT systems has focused on semiconductor detectors like cadmium zinc telluride (CZT) and cadmium telluride (CdTe). However, these detectors face high costs and charge-sharing issues, distorting the energy spectrum. Indirect detection using Yttrium Orthosilicate (YSO) scintillators with silicon photomultiplier (SiPM) offers a cost-effective alternative with high detection efficiency, low dark count rate, and high sensor gain.
View Article and Find Full Text PDFMed Phys
November 2024
Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, China.
Background: Current photon-counting computed tomography (CT) systems utilize semiconductor detectors, such as cadmium telluride (CdTe), cadmium zinc telluride (CZT), and silicon (Si), which convert x-ray photons directly into charge pulses. An alternative approach is indirect detection, which involves Yttrium Orthosilicate (YSO) scintillators coupled with silicon photomultipliers (SiPMs). This presents an attractive and cost-effective option due to its low cost, high detection efficiency, low dark count rate, and high sensor gain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!