Purpose: To compare the accuracy (ie, precision and trueness) of full-arch impressions fabricated using either a conventional polyvinyl siloxane (PVS) material or one of two intraoral optical scanners.

Materials And Methods: Full-arch impressions of a reference model were obtained using addition silicone impression material (Aquasil Ultra; Dentsply Caulk) and two optical scanners (Trios, 3Shape, and CEREC Omnicam, Sirona). Surface matching software (Geomagic Control, 3D Systems) was used to superimpose the scans within groups to determine the mean deviations in precision and trueness (μm) between the scans, which were calculated for each group and compared statistically using one-way analysis of variance with post hoc Bonferroni (trueness) and Games-Howell (precision) tests (IBM SPSS ver 24, IBM UK). Qualitative analysis was also carried out from three-dimensional maps of differences between scans.

Results: Means and standard deviations (SD) of deviations in precision for conventional, Trios, and Omnicam groups were 21.7 (± 5.4), 49.9 (± 18.3), and 36.5 (± 11.12) μm, respectively. Means and SDs for deviations in trueness were 24.3 (± 5.7), 87.1 (± 7.9), and 80.3 (± 12.1) μm, respectively. The conventional impression showed statistically significantly improved mean precision (P < .006) and mean trueness (P < .001) compared to both digital impression procedures. There were no statistically significant differences in precision (P = .153) or trueness (P = .757) between the digital impressions. The qualitative analysis revealed local deviations along the palatal surfaces of the molars and incisal edges of the anterior teeth of < 100 μm.

Conclusion: Conventional full-arch PVS impressions exhibited improved mean accuracy compared to two direct optical scanners. No significant differences were found between the two digital impression methods.

Download full-text PDF

Source
http://dx.doi.org/10.11607/ijp.5643DOI Listing

Publication Analysis

Top Keywords

precision trueness
8
full-arch impressions
8
optical scanners
8
deviations precision
8
qualitative analysis
8
digital impression
8
precision
6
trueness
6
conventional
5
impression
5

Similar Publications

Purpose: To investigate the feasibility and accuracy (trueness and precision) of facial scanning and virtual patient representation (VPR).

Materials And Methods: One participant was recruited and informed consent was obtained. VPR was performed 30 times with a custom fabricated intraoral scan body (ISB).

View Article and Find Full Text PDF

Thiouracil (2-thiouracil) is a thyrostat used to promote weight gain in cattle. However, its use is prohibited within the European Union (EU), necessitating the monitoring of its presence in bovine urine for beef exports to the EU. In this study, we present the development and validation of a quantitative method for the determination of 2-thiouracil, 4-thiouracil, and 6-methyl-2-thiouracil in bovine urine using liquid chromatography-tandem mass spectrometry (LC-MS/MS).

View Article and Find Full Text PDF

Statement Of Problem: Intraoral scans can be articulated in maximum intercuspal position (MIP) by using an artificial intelligence (AI) based program; however, the impact of edentulous areas on the accuracy of the MIP located using this AI-based program is unknown.

Purpose: The purpose of this in vitro study was to assess the impact of edentulous areas (0, 1, 2, 3, and 4 posterior mandibular teeth) on the accuracy of the MIP located using 3 intraoral scanners (IOSs) and an AI-based program.

Material And Methods: Stone casts articulated in MIP in an articulator were digitized (T710).

View Article and Find Full Text PDF

Background/purpose: The accuracy of intraoral scanners (IOSs) plays a crucial role in the success of final restorations in digital workflows. Previous studies have shown that numerous factors affect the accuracy of IOSs. Most studies have evaluated the accuracy of IOS under one restoration condition.

View Article and Find Full Text PDF

Objectives: To investigate the influence of different facial scanners and integration approaches on the accuracy of virtual dental patients (VDPs).

Methods: Forty VDPs were generated using a head mannequin and two facial scanners: 1) an industrial scanner and 2) a smartphone scanner. For each scanner, two integration methods were applied: 1) integration by virtual facebow scan and 2) integration by nose-teeth scan.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!