Hormonal responses following eccentric exercise in humans.

Hormones (Athens)

Department of Experimental Physiology, Medical School, National and Kapodistrian University of Athens, 75 Micras Asias Str., 115 27, Athens, Greece.

Published: October 2017

Objective: Mechanically overloaded muscle and its subsequent damage are strong stimuli for eliciting acute hormonal changes, while the muscle adaptation which occurs following exercise-induced muscle damage may involve complex hormonal responses before the completion of muscle regeneration. The purpose of this study was to investigate systemic responses of various hormones, as well as secreted proteins that are exercise-regulated and associated with muscle adaptation, for several days after eccentric exercise-induced muscle damage in humans.

Design: Nine young male volunteers performed 50 maximal eccentric muscle actions using the knee extensor muscles of both legs. Blood samples were drawn before and at 6, 48 and 120 hours post exercise and serum levels of growth hormone (GH), insulin-like growth factor binding protein-3 (IGFBP-3), cortisol, prolactin, thyroid-stimulating hormone (TSH), free thyroxine (fT4), irisin, follistatin and sclerostin were measured. Myoglobin (Mb) concentration and lactate dehydrogenase (LDH) activity were also evaluated as indirect markers of muscle damage.

Results: Significant alterations in Mb and LDH were observed over time after eccentric exercise (p=0.039-0.001). A late serum increase in fT4 and decrease in irisin levels, along with an early and persistent decrease in IGFBP-3 levels, were observed following the muscle-damaging exercise (p=0.049-0.016). GH, cortisol, prolactin, TSH, follistatin and sclerostin exhibited moderate changes during the recovery period after exercise, though without reaching statistical significance (p>0.05), while correlational analyses revealed significant associationsbetween GH and IGFBP-3, prolactin and sclerostin over time (p=0.049-0.001).

Conclusions: The significant hormonal responses observed in this study may indicate their involvement in the regenerative mechanisms following muscle damage, potentially as part of a regulatory network to support a normal adaptation process after muscle-damaging exercise.

Download full-text PDF

Source
http://dx.doi.org/10.14310/horm.2002.1761DOI Listing

Publication Analysis

Top Keywords

hormonal responses
12
muscle damage
12
muscle
9
eccentric exercise
8
muscle adaptation
8
exercise-induced muscle
8
cortisol prolactin
8
follistatin sclerostin
8
muscle-damaging exercise
8
exercise
6

Similar Publications

Background: Virus infection and herbivory can alter the expression of stress-responsive genes in plants. This study employed high-throughput transcriptomic and alternative splicing analysis to understand the separate and combined impacts on host gene expression in Arabidopsis thaliana by Myzus persicae (green peach aphid), and turnip mosaic virus (TuMV).

Results: By investigating changes in transcript abundance, the data shows that aphids feeding on virus infected plants intensify the number of differentially expressed stress responsive genes compared to challenge by individual stressors.

View Article and Find Full Text PDF

Kidney stones, a common urological disease, may involve the brain-kidney axis in their formation, though the specific mechanism remains unclear. This study aimed to investigate the effects of blue light on relevant metabolic indicators and oxidative stress status in rats with kidney stones through the brain-kidney axis. A rat model of kidney stones was established by administering 1% ethylene glycol and 2% ammonium chloride.

View Article and Find Full Text PDF

Genome-wide identification of carboxyesterase family members reveals the function of GeCXE9 in the catabolism of parishin A in Gastrodia elata.

Plant Cell Rep

January 2025

Shandong Engineering Research Center for Innovation and Application of General Technology for Separation of Natural Products, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China.

GeCXE9 can catalyze the hydrolysis of parishin A via two pathways during the medicinal processing of Gastrodia elata. Gastrodia elata Bl. is used in traditional Chinese medicine for its bioactive compounds, particularly phenols.

View Article and Find Full Text PDF

Predictions of drug-drug interactions resulting from time-dependent inhibition (TDI) of CYP3A4 have consistently overestimated or mispredicted (ie, false positives) the interaction that is observed in vivo. Recent findings demonstrated that the presence of the allosteric modulator progesterone (PGS) in the in vitro assay could alter the in vitro kinetics of CYP3A4 TDI with inhibitors that interact with the heme moiety, such as metabolic-intermediate complex forming inhibitors. The impact of the presence of 100 μM PGS on the TDI of molecules in the class of macrolides typically associated with metabolic-intermediate complex formation was investigated.

View Article and Find Full Text PDF

Tomato B-cell lymphoma2 (Bcl2)-associated athanogene 5 (SlBAG5) contributes negatively to immunity against necrotrophic fungus Botrytis cinerea through interacting with SlBAP1 and modulating catalase activity.

Int J Biol Macromol

January 2025

Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, PR China; Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, PR China. Electronic address:

The evolutionarily conserved and multifunctional B-cell lymphoma2 (Bcl2)-associated athanogene proteins (BAGs), serving as co-chaperone regulators, play a pivotal role in orchestrating plant stress responses. In this study, the possible involvement of tomato SlBAG genes in resistance to Botrytis cinerea was examined. The SlBAG genes respond with different expression change patterns to B.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!