Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Trichomes are epidermal outgrowths of plant tissues that can secrete or store large quantities of secondary metabolites, which contribute to plant defense responses against stress. The use of bioengineering methods for regulating the development of trichomes and metabolism is a widely researched topic. In the present study, we demonstrate that JcZFP8, a C2H2 zinc finger protein gene from Jatropha curcas L., can regulate trichome development in transgenic tobacco. To understand the underlying mechanisms, we performed transcriptome profiling of overexpression JcZFP8 transgenic plants and wild-type tobacco. Based on the analysis of differentially expressed genes, we determined that genes of the plant hormone signal transduction pathway was significantly enriched, suggesting that these pathways were modulated in the transgenic plants. In addition, the transcript levels of the known trichome-related genes in Arabidopsis were not significantly changed, whereas CycB2 and MYB genes were differentially expressed in the transgenic plants. Despite tobacco and Arabidopsis have different types of trichomes, all the pathways were associated with C2H2 zinc finger protein genes. Our findings help us to understand the regulation of multicellular trichome formation and suggest a new metabolic engineering method for the improvement of plants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.gene.2018.02.070 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!