Imidacloprid (IM) is used to control the Asian Citrus Psyllid (ACP) and citrus leafminer (CLM), which are related to the spread of huanglongbing (HLB or citrus greening) and citrus canker diseases, respectively. In Florida citrus, imidacloprid is mainly soil-drenched around the trees for proper root uptake and translocation into plant canopy to impact ACP and CLM. The objective of this study was to determine the effect of imidacloprid rate, and irrigate amount on concentration of imidacloprid in the soil following drench application to citrus trees in three age classes. The plots were established at the Southwest Florida Research and Education Center, Immokalee, using a randomized complete-block design for three age classes of trees: one-year-old trees (B1), three to five-year-old trees (B2), and eight-year-old trees (B3). The treatments were a combination of two rates each of imidacloprid (1D, 2D) and micro-sprinkling irrigation (1I, 2I). Imidacloprid and bromide (Br-) used as tracer were applied simultaneously. Soil moisture and concentrations of imidacloprid and Br were monitored using soil cores from hand held augers. Soil moisture content (θV) did not differ under two irrigation rates at any given observation day or depth, except following heavy rainfall events. Br- was lost from the observation depths (0-45 cm) about two weeks after soil-drench. Contrarily, imidacloprid persisted for a much longer time (4-8 weeks) at all soil depths, regardless of treatment combinations. The higher retardation of imidacloprid was related to the predominantly unsaturated conditions of the soil (which in turn reduced soil hydraulic conductivities by orders of magnitude), the imidacloprid sorption on soil organic matter, and the citrus root uptake. Findings of this study are important for citrus growers coping with the citrus greening and citrus canker diseases because they suggest that imidacloprid soil drenches can still be an effective control measure of ACP and CLM, and the potential for imidacloprid leaching to groundwater is minimal.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5843159PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0192668PLOS

Publication Analysis

Top Keywords

imidacloprid
13
imidacloprid soil
12
citrus
12
soil
9
control asian
8
asian citrus
8
citrus psyllid
8
psyllid acp
8
acp citrus
8
citrus leafminer
8

Similar Publications

This review provides a comprehensive overview of the direct and indirect effects of neonicotinoid pesticides (NEO-P) within African agricultural ecosystems and identifies research gaps, particularly in the monitoring and regulation of pesticide use. We observed a decline in the numbers of NEO-P studies conducted in Africa since 2019 with 40.7% of the countries reporting at least one study to date.

View Article and Find Full Text PDF

Transgenerational combined toxicity effects of neonicotinoids and triazole pesticides at environmentally relevant concentrations on D. magna: From individual to population level.

J Hazard Mater

December 2024

State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China. Electronic address:

The transgenerational impacts of pesticide mixture on Daphnia magna (D. magna) following long-term exposure, particularly regarding transcriptomic effects, remain poorly understood. We analyzed 470 irrigation water samples from various Chinese provinces.

View Article and Find Full Text PDF

Plant Coumarin Metabolism-Microbe Interactions: An Effective Strategy for Reducing Imidacloprid Residues and Enhancing the Nutritional Quality of Pepper.

J Agric Food Chem

December 2024

Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Danzhou, Hainan 570228, PR China.

Imidacloprid (IMI) stress positively correlates with the potential of coumarins to alleviate abiotic stress. However, little is known about the pathways and mechanisms by which coumarin reduces the IMI residue by regulating plant secondary metabolism and plant-microbe interactions. This study examined the impact of coumarin on the uptake, translocation, and metabolism of IMI in pepper plants by modulating the signal molecule levels and microbial communities in the rhizosphere and phyllosphere.

View Article and Find Full Text PDF

To determine the compatibility of two new biocontrol fungi with common chemical pesticides, this study examined the effects of three insecticides, namely, avermectin, imidacloprid, and acetamiprid, and three fungicides, namely, chlorogenonil, boscalid, and kasugamycin, on the mycelial growth and spore germination of strains IF-1106 and IJ-tg19. The insecticidal effects of mixed insecticides or fungicides with good compatibility with IJ-tg19 against were tested. The results showed that the six chemical pesticides exerted different degrees of inhibition on the mycelial growth of both strains, with an obvious dose-dependent effect.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!