Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Numerous studies have determined that physical cues, especially the nanotopography of materials, play key roles in directing stem cell differentiation. However, most research on nanoarrays for stem cell fate regulation is based on nonbiodegradable materials, such as silicon wafers, TiO, and poly(methyl methacrylate), which are rarely used as tissue engineering biomaterials. In this study, we prepared biodegradable polylactic acid (PLA) nanopillar arrays with different diameters but the same center-to-center distance using a series of anodic aluminum oxide nanowell arrays as templates. Human adipose-derived stem cells (hADSCs) were selected to investigate the effect of the diameter of PLA nanopillar arrays on stem cell differentiation. By culturing hADSCs without the assistance of any growth factors or osteogenic-induced media, the differentiation tendencies of hADSCs on the nanopillar arrays were assessed at the gene and protein levels. The assessment results suggested that the osteogenic differentiation of hADSCs can be driven by nanopillar arrays, especially by nanopillar arrays with a diameter of 200 nm. Moreover, an in vivo animal model of the samples demonstrated that PLA film with the 200 nm pillar array exhibits an improved ectopic osteogenic ability compared with the planar PLA film after 4 weeks of ectopic implantation. This study has provided a new variable to investigate in the interaction between stem cells and nanoarray structures, which will guide the bone regeneration clinical research field. This work paves the way for the utility of degradable biopolymer nanoarrays with specific geometrical and mechanical signals in biomedical applications, such as patches and strips for spine fusion, bone crack repair, and restoration of tooth enamel.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.7b04747 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!