Detoxification of polluted marine sediments using water treatment sludge.

J Environ Sci Health A Tox Hazard Subst Environ Eng

c Faculty of Civil Engineering , Department of Water Research , Zagreb , Croatia.

Published: July 2018

The purpose of this study was development of the optimal conditions for the inertization of the polluted marine sediments using groundwater treatment sludge highly enriched in iron and aluminum. For that purpose fine-grained sediment (>85% clay and silt fraction) highly enriched in copper and zinc was amended with the waste sludge (from 10% to 50%). The sample with the optimum percentage of the waste sludge was further subjected the thermal treatment at 200-800°C. The efficiency of the treatment was determined by the leaching tests and toxicity testing using Hordeum vulgare L. as biosystem. The percentage of the seed germination, the root elongation, and the germination index before and following the treatment were determined. Untreated sediment leachate caused significant arrest in the percentage of the seed germination (6.7 ± 6.7%), the root elongation (1.9 ± 2.2%), and the germination index (0.2 ± 0.3%) with EC of 24.9%, suggesting a significant toxic potential of the sediments. After amendment with 30% of the waste sludge the concentrations of the considered micropollutants decreased below regulated values while all three toxicological parameters showed no significant difference compared to the negative control. The toxicity of the sediment was completely removed following the thermal treatment at 400°C.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10934529.2018.1444974DOI Listing

Publication Analysis

Top Keywords

waste sludge
12
polluted marine
8
marine sediments
8
treatment sludge
8
highly enriched
8
thermal treatment
8
treatment determined
8
percentage seed
8
seed germination
8
root elongation
8

Similar Publications

Poultry litter waste management poses a significant global challenge, attributed to its characteristics (odorous, organic, pathogenic, attracting flies). Conventional approaches to managing poultry litter involve composting, biogas generation, or direct field application. Recently, there has been a surge of interest in a novel technology that involves the bioconversion of organic waste utilizing insects (known as entomoremediation), particularly focusing on black soldier fly larvae (BSFL), and has demonstrated successful transformation of various organic waste materials into insect meal and frass (referred to as organic frasstilizer).

View Article and Find Full Text PDF

Optimization of Compost and Peat Mixture Ratios for Production of Pepper Seedlings.

Int J Mol Sci

January 2025

Department of Molecular and Biometric Techniques, Museum and Institute of Zoology, Polish Academy of Sciences, 00-818 Warsaw, Poland.

Substituting peat moss with compost derived from organic waste in plant nurseries presents a promising solution for reducing environmental impact, improving waste management, and enhancing soil health while promoting sustainable agricultural practices. However, selecting the appropriate proportions of both materials is crucial for each plant species. This study investigates the effects of different ratios of compost and peat mixtures on the growth and development of pepper seedlings.

View Article and Find Full Text PDF

The selection of suitable raw materials as adsorbents is a key factor in effectively removing phosphorus from water. As an industrial by-product, soda residue exhibits high porosity and surface area, which can effectively adsorb pollutants. Magnetic lanthanum-iron soda residue (La-Fe-CSR) was synthesized using the co-precipitation method, and its characterization and mechanism for removing phosphate were thoroughly investigated.

View Article and Find Full Text PDF

Enhancing dark fermentative biohydrogen and VFA production via ozone pre-treatment.

Bioresour Technol

January 2025

Department of Environmental Technologies, Faculty of Marine and Environmental Sciences, IVAGRO-Wine and Agrifood Research Institute, University of Cadiz, 11510 Puerto Real, Cadiz, Spain.

This study investigates the effects of ozone pre-treatment on two types of organic wastes: secondary sludge (SS) and wine vinasse (WV). Ozone pre-treatment of SS, a semi-solid waste, significantly increased the Dissolved Organic Carbon (DOC) and Total Volatile Fatty Acids (TVFAs) through hydrolysis. Conversely, ozone pre-treatment of WV, a liquid organic waste, reduced the availability of soluble biodegradable substrates and decreased the concentration of carboxylic acids with carbon chain length higher than 4.

View Article and Find Full Text PDF

Understanding the low-temperature drying process of sludge with machine learning in a sewage-source heat pump drying system.

J Environ Manage

January 2025

Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, PR China.

Heat pump drying technology based on sewage heat source is an eco-friendly sludge drying method. It can effectively reduce the pollution of natural water bodies by waste heat while reducing energy consumption. However, the drying characteristics of sludge in this case remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!