Radiation in patients with diseases such as xeroderma pigmentosa (XP), systemic lupus erythematosus, and other connective diseases is a matter of concern because of higher incidence of toxicities. Here with, we are reporting a case of carcinoma esophagus with XP, who tolerated the treatment well with sufficiently prolonged palliation of symptoms, after treatment with external beam radiotherapy. This might be attributed to the different mechanisms of DNA damage and repair mechanisms for ultraviolet (UV) rays and X-rays. UV rays cause DNA damage by dimer formation whereas X-rays will cause single- or double-stranded breaks in DNA. The repair mechanisms for UV rays are nucleotide excision repair and translesion synthesis while for X-rays, they are base excision repair, homologous recombination, and nonhomologous end joining, and these repair mechanisms for X-rays are intact in a XP patient. Hence, they can be been treated with high dose of radiation, and they do tolerate the treatment well.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4103/jcrt.JCRT_1264_16 | DOI Listing |
Mol Cell Biochem
January 2025
State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China.
Synaptic plasticity is the basis for the proper functioning of the central nervous system. Synapses are the contact points between neurons and are crucial for information transmission, the structure and function of synapses change adaptively based on the different activities of neurons, thus affecting processes such as learning, memory, and neural development and repair. Synaptic activity requires a large amount of energy provided by mitochondria.
View Article and Find Full Text PDFAdv Exp Med Biol
January 2025
Department of Physiology, Faculty of Medicine, Muğla Sıtkı Koçman University, Muğla, Turkey.
Skin regeneration, repair, and the promotion of hair growth are intricate and dynamic processes essential for preserving the overall health, functionality, and appearance of both skin and hair. These processes involve a coordinated interplay of cellular activities and molecular signaling pathways that ensure the maintenance and restoration of skin integrity and hair vitality. Recent advancements in regenerative medicine have underscored the significant role of mesenchymal stem cell (MSC)-derived exosomes as key mediators in these processes.
View Article and Find Full Text PDFMol Biotechnol
January 2025
Department of Pediatrics, Zhongda Hospital, The School of Medicine, Southeast University, No. 87 Dingjiaqiao, Hunan Road, Nanjing, 210009, Jiangsu, China.
Perinatal white matter injury (WMI), which is prevalent in premature infants, involves M2 microglia affecting oligodendrocyte precursor cells (OPCs) through exosomes, promoting OPC growth and reducing WMI. The molecular mechanism of WMI remains unclear, and this study explored the role of M2 microglia-derived exosomes in WMI. A tMCAO rat model was constructed to simulate WMI characteristics in vivo.
View Article and Find Full Text PDFThorac Cancer
January 2025
Department of Thoracic Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China.
Background: Our study aimed to explore the specific functions and potential mechanisms of miR-224-5p in non-small cell lung cancer (NSCLC).
Methods: We first analyzed the expression of miR-224-5p in NSCLC patients and cell lines through the GEO database and qRT-PCR analysis. Then, we used MTT assays, wound healing assays, Transwell assays, and western blotting to evaluate the effects of miR-224-5p on NSCLC cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT).
Ann Med
December 2025
Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, The People's Republic of China.
Objectives: The incidence rate of intervertebral disc degeneration (IVDD) is increasing year by year, which brings great harm to our health. The change of biomechanical factors is an important reason for IVDD. Therefore, more and more studies use finite element (FE) models to analyze the biomechanics of spine.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!