The solvent and autocatalytic effects of the electrophilic aromatic chlorination of benzene are studied using a combined approach of static calculations and ab initio metadynamics simulations. Different possible reaction pathways are investigated and the influence of the solvents (CCl , acetonitrile and acetic acid) is thoroughly assessed. Our results show that the stability and lifetime of a charged σ-complex is increased by electrostatic stabilisation effects of the environment, which can originate from catalytic HCl, solvating effects of polar solvents (acetonitrile), or specific hydrogen bonding interactions with the solvent (acetic acid). Metadynamics simulations reveal a new chlorine addition mechanism explaining the autocatalytic effects of the reaction. The strength of combining static calculations and metadynamics simulations is highlighted, which provide complementary insight into chemical reactions in solvent.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201800385DOI Listing

Publication Analysis

Top Keywords

autocatalytic effects
12
metadynamics simulations
12
solvent autocatalytic
8
electrophilic aromatic
8
aromatic chlorination
8
static calculations
8
acetic acid
8
effects
5
solvent
4
effects stabilisation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!