Photoswitchable acid-base pairs, whose pK values can be reversibly altered, are attractive molecular tools to control chemical and biological processes with light. A significant, light-induced pK change of three units in aqueous medium has been realized for two thermally stable states, which can be interconverted using UV and green light. The light-induced pK modulation is based on incorporating a 3-H-thiazol-2-one moiety into the framework of a diarylethene photoswitch, which loses the heteroaromatic stabilization of the negatively charged conjugate base upon photochemical ring closure, and hence becomes significantly less acidic. In addition, the efficiency of the photoreactions is drastically increased in the deprotonated state, giving rise to catalytically enhanced photochromism. It appears that protonation has a significant influence on the shape of the ground- and excited-state potential energy surfaces, as indicated by quantum-chemical calculations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201801270 | DOI Listing |
Plant Physiol
January 2025
Guizhou Engineering Research Center for Fruit Crops, Agricultural College, Guizhou University, Guiyang, Guizhou, China.
Light plays an important role in determining the L-ascorbate (AsA) pool size in plants, primarily through the transcriptional regulation of AsA metabolism-related genes. However, the specific mechanism of transcriptional induction responsible for light-dependent AsA biosynthesis remains unclear. In this study, we used a promoter sequence containing light-responsive motifs from GDP-L-galactose phosphorylase 2 (RrGGP2), a key gene involved in AsA overproduction in Rosa roxburghii fruits, to identify participating transcription factors.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Hebei Key Laboratory of Plant Genetic Engineering, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China.
Light is a vital environmental cue that profoundly influences the development of plants. LED lighting offers significant advantages in controlled growth environments over fluorescent lighting. Under monochromatic blue LED light, wheat plants exhibited reduced stature, accelerated spike development, and a shortened flowering period with increased blue light intensity promoting an earlier heading date.
View Article and Find Full Text PDFMolecules
December 2024
Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland.
The concept of using polyaniline/titanium dioxide heterostructures as efficient photocatalysts is based on the synergistic effect of conducting polymer and metal oxide semiconductors. Due to inconclusive literature reports, the effect of different polyaniline/TiO ratios on photocatalytic activity under UV and visible light was investigated. In most papers, non-recommended dyes are used as model compounds to evaluate visible light activity.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
January 2025
Biofunctional Nanomaterials Laboratory, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico. Electronic address:
The integration of multiple functionalities into single theranostic platforms offers new opportunities for personalized and minimally invasive clinical interventions, positioning these materials as highly promising tools in modern medicine. Thereby, magneto-luminescent Janus-like nanoparticles (JNPs) were developed herein, and encapsulated into near-infrared (NIR) light- and pH- responsive micelle-like aggregates (Mic) for simultaneous magnetic targeting, biomedical imaging, photothermal therapy, and pH- NIR-light activated drug delivery. The JNPs consisted of NaYF:Yb,Tm upconverting nanoparticles (UCNPs) on which a well-differentiated magnetite structure (MNPs) grew epitaxially.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 10120, Thailand.
A single-component flavin-dependent halogenase, AetF, has emerged as an attractive biocatalyst for catalyzing halogenation. However, its flavin chemistry remains unexplored and cannot be predicted due to its uniqueness in sequence and structure compared to other flavin-dependent monooxygenases. Here, we investigated the flavin reactions of AetF using transient kinetics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!