Deficiencies of galactosylceramidase and glucocerebrosidase result in the accumulation of galactosylsphingosine (GalSph) and glucosylsphingosine (GluSph) in Krabbe and Gaucher diseases, respectively. GalSph and GluSph are useful biomarkers for both diagnosis and monitoring of treatment effects. We have developed and validated a sensitive, accurate, high-throughput assay for simultaneous determination of the concentration of GalSph and GluSph in mouse serum. GalSph and GluSph and their deuterated internal standards were extracted by protein precipitation in quantitative recoveries, baseline separated by hydrophilic interaction chromatography and detected by positive-ion electrospray mass spectrometry in multiple reaction monitoring mode. Total run time was 7 min. The lower limit of quantification was 0.2 ng/mL for both GalSph and GluSph. Sample stability, assay precision and accuracy, and method robustness were demonstrated. This method has been successfully applied to measurement of these lipid biomarkers in a natural history study in twitcher (Krabbe) mice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5992066PMC
http://dx.doi.org/10.1002/bmc.4235DOI Listing

Publication Analysis

Top Keywords

galsph glusph
16
mouse serum
8
galsph
5
glusph
5
hilic-ms/ms method
4
method simultaneous
4
simultaneous quantification
4
quantification lysosomal
4
lysosomal disease
4
disease markers
4

Similar Publications

Sphingolipids (SphLs) are a diverse class of molecules that are regulated by a complex network of enzymatic pathways. A disturbance in these pathways leads to lipid accumulation and initiation of several SphL-related disorders. Acid ceramidase is one of the key enzymes that regulate the metabolism of ceramides and glycosphingolipids, which are important members of the SphL family.

View Article and Find Full Text PDF

Deficiencies of galactosylceramidase and glucocerebrosidase result in the accumulation of galactosylsphingosine (GalSph) and glucosylsphingosine (GluSph) in Krabbe and Gaucher diseases, respectively. GalSph and GluSph are useful biomarkers for both diagnosis and monitoring of treatment effects. We have developed and validated a sensitive, accurate, high-throughput assay for simultaneous determination of the concentration of GalSph and GluSph in mouse serum.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!