A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Antioxidant effect of myricitrin on hyperglycemia-induced oxidative stress in C2C12 cell. | LitMetric

Hyperglycemia induced oxidative stress inside the cells. Myricitrin, as an antioxidant plant-derived component, may be useful in hyperglycemia. Hence, the aim of this study was conducted to evaluate the antioxidant effects of myricitrin on hyperglycemia-induced oxidative damage in myotubes (C2C12 cells). In this experimental study, mouse myoblast cell line (C2C12) was obtained and divided into five groups: control, hyperglycemia, hyperglycemia + myricitrin 1, 3, and 10 μM. After treatment period for 48 h, cells were collected, homogenized, and centrifuged at 2000 rpm for 10 min. All samples were kept at - 80 °C until experimental and real-time PCR assessments were performed. Hyperglycemia increased malondialdehyde (MDA) (p < 0.05), total antioxidant capacity (TAC) (p < 0.001), and cellular apoptosis, and decreased levels of superoxide dismutase (SOD), catalase (CAT) (p < 0.01), myotube glycogen content (p < 0.05), glucose transporter type 4 (Glut-4), and cellular viability (p < 0.001). Myricitrin administration improved SOD (p < 0.05), CAT (p < 0.01), muscle cell's glycogen content (p < 0.01), Glut-4 gene expression (p < 0.001), Thiazolyl blue tetrazolium bromide (MTT) (p < 0.05), and Bax to Bcl-2 ratio (p < 0.001), and reduced MDA (p < 0.05) compared to hyperglycemia group. In conclusion, hyperglycemic condition induced oxidative stress along with cellular apoptosis, and myricitrin improved these disorders. Also, low and moderate doses of myricitrin are more efficient on skeletal muscle cells exposed to hyperglycemic statues than a high concentration of this antioxidant agent.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6045534PMC
http://dx.doi.org/10.1007/s12192-018-0888-zDOI Listing

Publication Analysis

Top Keywords

myricitrin hyperglycemia-induced
8
hyperglycemia-induced oxidative
8
oxidative stress
8
hyperglycemia
5
antioxidant myricitrin
4
stress c2c12
4
c2c12 cell
4
cell hyperglycemia
4
hyperglycemia induced
4
induced oxidative
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!