Cloud-based adaptive exon prediction for DNA analysis.

Healthc Technol Lett

Aiboz R&D Pvt. Ltd., Navya Landmark, Lingampally, Hyderabad, T.S., 502032, India.

Published: February 2018

Cloud computing offers significant research and economic benefits to healthcare organisations. Cloud services provide a safe place for storing and managing large amounts of such sensitive data. Under conventional flow of gene information, gene sequence laboratories send out raw and inferred information via Internet to several sequence libraries. DNA sequencing storage costs will be minimised by use of cloud service. In this study, the authors put forward a novel genomic informatics system using Amazon Cloud Services, where genomic sequence information is stored and accessed for processing. True identification of exon regions in a DNA sequence is a key task in bioinformatics, which helps in disease identification and design drugs. Three base periodicity property of exons forms the basis of all exon identification techniques. Adaptive signal processing techniques found to be promising in comparison with several other methods. Several adaptive exon predictors (AEPs) are developed using variable normalised least mean square and its maximum normalised variants to reduce computational complexity. Finally, performance evaluation of various AEPs is done based on measures such as sensitivity, specificity and precision using various standard genomic datasets taken from National Center for Biotechnology Information genomic sequence database.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5830887PMC
http://dx.doi.org/10.1049/htl.2017.0032DOI Listing

Publication Analysis

Top Keywords

adaptive exon
8
cloud services
8
genomic sequence
8
sequence
5
cloud-based adaptive
4
exon
4
exon prediction
4
prediction dna
4
dna analysis
4
cloud
4

Similar Publications

Genome-wide identification and expression analysis of orphan genes in twelve (sub)species.

3 Biotech

February 2025

Centre for Research in Biotechnology for Agriculture (CEBAR), Universiti Malaya, 50603 Kuala Lumpur, Malaysia.

Unlabelled: Orphan genes (OGs), also known as lineage-specific genes, are species-specific genes that play a crucial role in species-specific adaptations to various stresses. Although OGs have been identified in several plant species, there is no information on OGs in banana genomes. This study aimed to systematically identify OGs in twelve banana (sub)species using comparative genomics.

View Article and Find Full Text PDF

Adaptive evolution of stress response genes in parasites aligns with host niche diversity.

BMC Biol

January 2025

Faculty of Sciences, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, UHasselt - Hasselt University, Diepenbeek, Belgium.

Background: Stress responses are key the survival of parasites and, consequently, also the evolutionary success of these organisms. Despite this importance, our understanding of the evolution of molecular pathways dealing with environmental stressors in parasitic animals remains limited. Here, we tested the link between adaptive evolution of parasite stress response genes and their ecological diversity and species richness.

View Article and Find Full Text PDF

Plants host a range of DNA elements capable of self-replication. These molecules, usually associated to the activity of transposable elements or viruses, are found integrated in the genome or in the form of extrachromosomal DNA. The activity of these elements can impact genome plasticity by a variety of mechanisms, including the generation of structural variants, the shuffling of regulatory or coding DNA sequences across the genome, and DNA endoduplication.

View Article and Find Full Text PDF

Background: Molecular diagnosis has become highly significant for patient management in oncology.

Methods: Here, 30 well-characterized clinical germline samples were studied with adaptive sampling to enrich the full sequence of 152 cancer predisposition genes. Sequencing was performed on Oxford Nanopore (ONT) R10.

View Article and Find Full Text PDF

A comprehensive genome-wide identification of SET-domain-containing genes in (tomato) has revealed 46 members. Phylogenetic analysis showed that these genes, along with those from and , are divided into five subfamilies, with Subfamilies II and V being the largest. Motif and domain analyses identified 15 conserved motifs and revealed the presence of pre-SET and post-SET domains in several genes, suggesting functional diversification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!