Cereal production around the world is critical to the food supply for the human population. Crop productivity is primarily determined by a combination of temperature and precipitation because temperatures have to be in the range for plant growth and precipitation has to supply crop water requirements for a given environment. The question is often asked about the changes in productivity and what we can expect in the future and we evaluated the causes for variation in historical annual statewide wheat grain yields in Oklahoma, Kansas, and North Dakota across the Great Plains of United States. Wheat ( L.) is adapted to this area and we focused on production in these states from 1950 to 2016. This analysis used a framework for annual yields using yield gaps between attainable and actual yields and found the primary cause of the variation among years were attributable to inadequate precipitation during the grain-filling period. In Oklahoma, wheat yields were reduced when April and May precipitation was limited ( = 0.70), while in Kansas, May precipitation was the dominant factor ( = 0.78), and in North Dakota June-July precipitation was the factor explaining yield variation ( = 0.65). Temperature varied among seasons and at the statewide level did not explain a significant portion of the yield variation. The pattern of increased variation in precipitation will cause further variation in wheat production across the Great Plains. Reducing yield variation among years will require adaptation practices that increase water availability to the crop coupled with the positive impact derived from other management practices, e.g., cultivars, fertilizer management, etc.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5826184 | PMC |
http://dx.doi.org/10.3389/fpls.2018.00224 | DOI Listing |
J Med Virol
January 2025
Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China.
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging viral hemorrhagic fever with a high fatality rate and notable public health impact, caused by a novel phlebovirus, primarily transmitted through infected tick bites. This study aimed to assess the prevalence of co-infections among hospitalized patients with SFTS, characterize isolated pathogens, and evaluate demographics, clinical features, and laboratory variations to identify potential risk factors for co-infections. In a cohort of 78 SFTS patients categorized into co-infection and non-co-infection groups, 44.
View Article and Find Full Text PDFF1000Res
January 2025
Department of Aeronautical & Automobile Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
Background: Centrifugal compressors are dynamic machines utilizing a rotating impeller, efficiently accelerate incoming gases, transforming kinetic energy into pressure energy for compression. They serve a wide range of industries, including air conditioning, refrigeration, gas turbines, industrial processes, and applications such as air compression, gas transportation, and petrochemicals, demonstrating their versatility. Designing a centrifugal compressor poses challenges related to achieving high aerodynamic efficiency, surge and choke control, material selection, rotor dynamics, cavitation, erosion, and addressing environmental considerations while balancing costs.
View Article and Find Full Text PDFTo concentrate omega-3 fatty acids (-3) in fish oil (FO), olein and super olein fraction (OF) of FO were produced by winterization. For this purpose, FO was slowly cooled to -50°C (24 h), the mixture of crystallized and non-crystallized phases was separated, filtrate was coded as OF (yield 32%), 35% of OF was kept for storage study and analytical purpose, remaining 65% was further slowly cooled down to -75°C (24 h) and filtered, filtrate was coded as super olein (SF, yield 23%). GC-MS analysis showed that unsaturated fatty acids increased due to successive winterization.
View Article and Find Full Text PDFIn this research, we report a simple fluorescent probe designed to detect thallium(iii) ions (Tl) in artificial urine samples. The Tl signaling probe (TP-1) was readily prepared from 2-acetyl-6-methoxynaphthalene and hydrazine. In a pH 4.
View Article and Find Full Text PDFMed Phys
January 2025
Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey.
Background: Radiofrequency (RF) transmit arrays play a crucial role in various MRI applications, offering enhanced field control and improved imaging capabilities. Designing and optimizing these arrays, particularly in high-field MRI settings, poses challenges related to coupling, resonance, and construction imperfections. Numerical electromagnetic simulation methods effectively aid in the initial design, but discrepancies between simulated and fabricated arrays often necessitate fine-tuning.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!