Genotyping by Sequencing and Genome-Environment Associations in Wild Common Bean Predict Widespread Divergent Adaptation to Drought.

Front Plant Sci

Department of Agricultural and Environmental Science, Tennessee State University, Nashville, TN, United States.

Published: February 2018

Drought will reduce global crop production by >10% in 2050 substantially worsening global malnutrition. Breeding for resistance to drought will require accessing crop genetic diversity found in the wild accessions from the driest high stress ecosystems. Genome-environment associations (GEA) in crop wild relatives reveal natural adaptation, and therefore can be used to identify adaptive variation. We explored this approach in the food crop L., characterizing 86 geo-referenced wild accessions using genotyping by sequencing (GBS) to discover single nucleotide polymorphisms (SNPs). The wild beans represented Mesoamerica, Guatemala, Colombia, Ecuador/Northern Peru and Andean groupings. We found high polymorphism with a total of 22,845 SNPs across the 86 accessions that confirmed genetic relationships for the groups. As a second objective, we quantified allelic associations with a bioclimatic-based drought index using 10 different statistical models that accounted for population structure. Based on the optimum model, 115 SNPs in 90 regions, widespread in all 11 common bean chromosomes, were associated with the bioclimatic-based drought index. A gene coding for an ankyrin repeat-containing protein and a phototropic-responsive NPH3 gene were identified as potential candidates. Genomic windows of 1 Mb containing associated SNPs had more positive Tajima's D scores than windows without associated markers. This indicates that adaptation to drought, as estimated by bioclimatic variables, has been under natural divergent selection, suggesting that drought tolerance may be favorable under dry conditions but harmful in humid conditions. Our work exemplifies that genomic signatures of adaptation are useful for germplasm characterization, potentially enhancing future marker-assisted selection and crop improvement.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5826387PMC
http://dx.doi.org/10.3389/fpls.2018.00128DOI Listing

Publication Analysis

Top Keywords

genotyping sequencing
8
genome-environment associations
8
common bean
8
adaptation drought
8
drought will
8
wild accessions
8
bioclimatic-based drought
8
windows associated
8
drought
7
wild
5

Similar Publications

Emergence and polyclonal dissemination of NDM-5/OXA-181 carbapenemase-producing Escherichia coli in the French Indian Ocean territories.

Ann Clin Microbiol Antimicrob

January 2025

Laboratoire de Bactériologie, CHU Félix Guyon, Allée des Topazes, 97400, Saint-Denis, La Réunion, France.

Aim: Located in the Southwest Indian Ocean area (SIOA), the two French overseas territories (FOTs) of Reunion and Mayotte islands are heavily impacted by antimicrobial resistance. The aim of this study was to investigate all cases of NDM-5 and OXA-181 carbapenemase-producing Escherichia coli (CPEc) in these two FOTs between 2015 and 2020, to better understand the regional spread of these last-line treatment resistant bacteria.

Methods: All E.

View Article and Find Full Text PDF

Background: Autosomal Dominant Polycystic Kidney Disease (ADPKD) represents the most common monogenic cause of kidney failure. While identifying genetic variants predicts disease progression, characterization of recently described ADPKD-like variants is limited. We explored disease progression and genetic spectrum of genetically-confirmed ADPKD families with PKD1 and non-PKD1 variants.

View Article and Find Full Text PDF

The diagnostic landscape of brain tumors integrates comprehensive molecular markers alongside traditional histopathological evaluation. DNA methylation and next-generation sequencing (NGS) have become a cornerstone in central nervous system (CNS) tumor classification. A limiting requirement for NGS and methylation profiling is sufficient DNA quality and quantity, which restrict its feasibility.

View Article and Find Full Text PDF

Marek's disease (MD), a T cell lymphoma disease in chickens, is caused by the Marek's disease virus (MDV) found ubiquitously in the poultry industry. Genetically resistant Line 6 (L6) and susceptible Line 7 (L7) chickens have been instrumental to research on avian immune system response to MDV infection. In this study we characterized molecular signatures unique to splenic immune cell types across different genetic backgrounds 6 days after infection.

View Article and Find Full Text PDF

Calligonum polygonoides, an endangered species of desert due to poor regeneration and overexploitation, which requires immediate conservation attention. Genetic diversity analysis is crucial for effective conservation and management initiatives, for elite genotypes. Therefore, in the present study, SCoT (start codon target) and ISSR (inter simple sequence repeat) markers were used to investigate the genetic variability in 120 individuals of Calligonum polygonoides.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!