Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Secretion of membrane-limited vesicles, collectively termed extracellular vesicles (EVs), is an important biological process of both eukaryotic and prokaryotic cells. This process has been observed in bacteria, but remains to be better characterized at high resolution in cyanobacteria. In the present work, we address the release of EVs by (CYRF-01), a filamentous bloom-forming cyanobacterium, exposed to environmental stressors. First, non-axenic cultures of (CYRF-01) were exposed to ultraviolet radiation (UVA + UVB) over a 6 h period, which is known to induce structural damage to this species. Second, was co-cultured in interaction with another cyanobacterium species, (MIRF-01), over a 24 h period. After the incubation times, cell density and viability were analyzed, and samples were processed for transmission electron microscopy (TEM). Our ultrastructural analyses revealed that constitutively releases EVs from the outer membrane during its normal growth and amplifies such ability in response to environmental stressors. Both situations induced significant formation of outer membrane vesicles (OMVs) by compared to control cells. Quantitative TEM revealed an increase of 48% (UV) and 60% (interaction) in the OMV numbers compared to control groups. Considering all groups, the OMVs ranged in size from 20 to 300 nm in diameter, with most OMVs showing diameters between 20 and 140 nm. Additionally, we detected that OMV formation is accompanied by phosphatidylserine exposure, a molecular event also observed in EV-secreting eukaryotic cells. Altogether, we identified for the first time that has the competence to secrete OMVs and that under different stress situations the genesis of these vesicles is increased. The amplified ability of cyanobacteria to release OMVs may be associated with adaptive responses to changes in environmental conditions and interspecies cell communication.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5826386 | PMC |
http://dx.doi.org/10.3389/fmicb.2018.00272 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!