Endophytic bacteria are nearly ubiquitously present in the internal tissues of plants, and some endophytes can promote plant growth. In this study, we sampled the roots of four ancestral species of sugarcane (two genotypes per species) and two sugarcane cultivars, and used 16S rRNA and gene sequencing to characterize the root endophytic bacterial communities and diazotroph diversity. A total of 7,198 operational taxonomic units (OTUs) were detected for the endophytic bacteria community. The endophytic bacterial communities exhibited significantly different α- and β-diversities. From the 202 detected families in the sugarcane roots, a core microbiome containing 13 families was identified. The gene was successfully detected in 9 of 30 samples from the four sugarcane species assayed, and 1,734 OTUs were merged for endophytic diazotrophs. In the tested samples, 43 families of endophytic diazotrophs were detected, and six families showed differences across samples. Among the 20 most abundant detected genera, 10 have been reported to be involved in nitrogen fixation in sugarcane. These findings demonstrate the diversity of the microbial communities in different sugarcane germplasms and shed light on the mechanism of biological nitrogen fixation in sugarcane.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5826347 | PMC |
http://dx.doi.org/10.3389/fmicb.2018.00267 | DOI Listing |
Mol Genet Genomics
December 2024
Institute of Ecology and Earth Sciences, University of Tartu, Liivi 2, 50409, Tartu, Estonia.
Root nodule symbiosis is traditionally recognized in the Fabales, Fagales, Cucurbitales, and Rosales orders within the Rosid I clade of angiosperms. However, ambiguous root nodule formation has been reported in Zygophyllaceae and Roystonea regia (Arecaceae), although a detailed analysis has yet to be conducted. We aimed to perform morphological analyses of root structures in these plants and utilize metagenomic techniques to identify and characterize the bacterial populations within the nodule-like structures.
View Article and Find Full Text PDFJ Fungi (Basel)
December 2024
Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore 641003, India.
The interaction between plants and microorganisms plays a major role in plant growth promotion and disease management. While most microorganisms directly influence plant health, some indirectly support growth through pest and disease suppression. Endophytic entomopathogenic fungi are diverse, easily localized, and have long-lasting effects on insect pests.
View Article and Find Full Text PDFBMC Genom Data
December 2024
Institute of Agrobiology, Vietnam National University of Agriculture, Hanoi, Vietnam.
Objectives: This study aims to generate a de novo complete whole-genome assembly of Pseudomonas sp. strain HOU2, which is an endophytic bacterium isolated from dangshen roots that shows to improve the growth of in vitro dangshen plants. Further investigation of the whole genome of Pseudomonas sp.
View Article and Find Full Text PDFFront Cell Infect Microbiol
December 2024
Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, China.
is an important genus in the Apiosporaceae family with a worldwide distribution. They exhibit different lifestyles including pathogenic, saprophytic, and endophytic. In this study, we aimed to explore the associated with bamboo and collected 14 apiospora-like taxa from the forests of Yunnan Province, China.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!