Metagenomic approaches became increasingly popular in the past decades due to decreasing costs of DNA sequencing and bioinformatics development. So far, however, the recovery of long genes coding for secondary metabolites still represents a big challenge. Often, the quality of metagenome assemblies is poor, especially in environments with a high microbial diversity where sequence coverage is low and complexity of natural communities high. Recently, new and improved algorithms for binning environmental reads and contigs have been developed to overcome such limitations. Some of these algorithms use a similarity detection approach to classify the obtained reads into taxonomical units and to assemble draft genomes. This approach, however, is quite limited since it can classify exclusively sequences similar to those available (and well classified) in the databases. In this work, we used draft genomes from Lake Stechlin, north-eastern Germany, recovered by MetaBat, an efficient binning tool that integrates empirical probabilistic distances of genome abundance, and tetranucleotide frequency for accurate metagenome binning. These genomes were screened for secondary metabolism genes, such as polyketide synthases (PKS) and non-ribosomal peptide synthases (NRPS), using the Anti-SMASH and NAPDOS workflows. With this approach we were able to identify 243 secondary metabolite clusters from 121 genomes recovered from our lake samples. A total of 18 NRPS, 19 PKS, and 3 hybrid PKS/NRPS clusters were found. In addition, it was possible to predict the partial structure of several secondary metabolite clusters allowing for taxonomical classifications and phylogenetic inferences. Our approach revealed a high potential to recover and study secondary metabolites genes from any aquatic ecosystem.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5826242PMC
http://dx.doi.org/10.3389/fmicb.2018.00251DOI Listing

Publication Analysis

Top Keywords

secondary metabolites
12
draft genomes
8
secondary metabolite
8
metabolite clusters
8
secondary
6
recovering genomics
4
clusters
4
genomics clusters
4
clusters secondary
4
metabolites lakes
4

Similar Publications

Oil palm () yield is impacted by abiotic stresses, leading to significant economic losses. To understand the core abiotic stress transcriptome (CAST) of oil palm, we performed RNA-Seq analyses of oil palm leaves subjected to drought, salinity, waterlogging, heat, and cold stresses. A total of 19,834 differentially expressed genes (DEGs) were identified.

View Article and Find Full Text PDF

is a traditional Chinese medicinal herb rich in various bioactive secondary metabolites, such as alkaloids and flavonoids, and exhibits remarkable resistance to abiotic stress. The WRKY transcription factor (TF) family is one of the largest plant-specific TF families and plays a crucial role in plant growth, development, and responses to abiotic stress. However, a comprehensive genome-wide analysis of the WRKY gene family in has not yet been conducted.

View Article and Find Full Text PDF

Bacterial canker is a devastating disease in kiwifruit production, primarily caused by pv. . In this study, a strain of named JIN4, isolated from a kiwifruit branch, showed antagonistic activity.

View Article and Find Full Text PDF

In this work, cerium dioxide nanostructures were synthesized in an easy sonochemical way. CeO nanoparticles have received much attention in nanotechnology. CeONPs, exhibit biomimetic properties depending on their size, ratio of valency on their surface, and the ambient physico-chemical properties.

View Article and Find Full Text PDF

Regulation of important natural products biosynthesis by WRKY transcription factors in plants.

J Adv Res

January 2025

Department of Chinese Medicine Authentication, College of Pharmacy, Naval Medical University, No.325 Guohe Road, Shanghai 200433, China; Department of Pharmacy, Shanghai Fourth People's Hospital Affiliated to Tongji University, No.1279 Sanmen Road, Shanghai 200434, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, No.325 Guohe Road, Shanghai 200433, China. Electronic address:

Background: Plants produce abundant natural products, among which are species-specific and diversified secondary metabolites that are essential for growth and development, as well as adaptation to adversity and ecology. Moreover, these secondary metabolites are extensively utilized in pharmaceuticals, fragrances, industrial materials, and more. WRKY transcription factors (TFs), as a family of TFs unique to plants, have significant functions in many plant life activities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!