Elaborate modeling study suggests an important role of capillary transit time heterogeneity (CTTH) reduction in brain oxygenation during functional hyperemia. Here, we use optical coherence tomography angiography (OCTA) capillary velocimetry to probe blood flow dynamics in cerebral capillary beds and validate the change in CTTH during functional activation in an in vivo rodent model. Through evaluating flow dynamics and consequent transit time parameters from thousands of capillary vessels within three-dimensional (3-D) tissue volume upon hindpaw electrical stimulation, we observe reductions in both capillary mean transit time (MTT) (9.8% ± 2.2) and CTTH (5.9% ± 1.4) in the hindlimb somatosensory cortex (HLS1). Additionally, capillary flow pattern modification is observed with a significant difference (p < 0.05) between the HLS1 and non-activated cortex regions. These quantitative findings reveal a localized microcirculatory adjustment during functional activation, consistent with previous studies, and support the critical contribution of capillary flow homogenization to brain oxygenation. The OCTA velocimetry is a useful tool to image microcirculatory dynamics in vivo using animal models, enabling a more comprehensive understanding as to hemodynamic-metabolic coupling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5841298PMC
http://dx.doi.org/10.1038/s41598-018-22513-4DOI Listing

Publication Analysis

Top Keywords

transit time
12
capillary
8
capillary flow
8
functional activation
8
optical coherence
8
coherence tomography
8
tomography angiography
8
capillary velocimetry
8
capillary transit
8
flow dynamics
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!