Chicken brain beta-N-acetylhexosaminidases from embryos (16 and 21 days old), newborns (1 and 4 days old), and adults (3 1/2 months and 2 years old) were separated into four different forms by ion exchange chromatography on diethylaminoethyl-cellulose. Three of these forms were "acid" hexosaminidases (I, IIA, and IIB), and the fourth was a "neutral" form. Throughout development of the chicken, forms IIA and III maintained the same activity ratio, whereas that for form I decreased and that for form IIB showed an increase.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1471-4159.1987.tb05668.xDOI Listing

Publication Analysis

Top Keywords

chicken brain
8
separation characterization
4
forms
4
characterization forms
4
forms beta-n-acetylhexosaminidase
4
beta-n-acetylhexosaminidase chicken
4
brain chicken
4
brain beta-n-acetylhexosaminidases
4
beta-n-acetylhexosaminidases embryos
4
embryos days
4

Similar Publications

Introduction: Homeobox genes are highly conserved and play critical roles in brain development. Recently we have found that mammals have an additional fragment of approximately 20 amino acids in Emx1 and a poly-(Ala)6-7 in Emx2, compared to other amniotes. It has been shown that Emx1 and Emx2 have synergistic actions in the brain development.

View Article and Find Full Text PDF

This study aimed to assess the effects of a diet containing 20.8 mg FB1 + FB2/kg over four and nine days on oxylipin (OL) profiles in the liver and brain of chickens. A total of 96 OLs, derived from seven polyunsaturated fatty acids (PUFAs) via the cyclooxygenase (COX), lipoxygenase (LOX), cytochrome P450 (P450), and non-enzymatic pathways, were measured using HPLC-MS/MS.

View Article and Find Full Text PDF

Naturally occurring, rostrally conjoining chicken twins attempt to make a forebrain.

Dev Biol

January 2025

Institute of Life Sciences and Health (ILSH), School of Medicine, Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, PO1 2DT, UK. Electronic address:

Conjoined twinning is a special case of monozygotic, monoamniotic twinning. Human conjoined twinning, and vertebrate conjoined twinning in general, is a very rare phenomenon. It has been suggested that the risk of conjoined twinning increases with some medication and upon assisted reproduction.

View Article and Find Full Text PDF

Depression is presented as a multi-factorial bio-psycho-social expression that has evolved primarily as an effect of stressors related to the motivational/emotional systems that regulate the in our relationship with conspecifics. These stressors may be caused by two sources of threat, firstly, the loss of bonding with the caregiver and later with a partner and/or group which relates to the SEPARATION (PANIC/GRIEF) system, secondly, social defeat as an expression of the social competition and social dominance. The sexual maturity drives the individual to social competition and social dominance, even if the latter often occurs before sexual maturity, e.

View Article and Find Full Text PDF

Modulatory effect of Echium plantagineum oil on the n-3 LC-PUFA biosynthetic capacity of chicken (Gallus gallus).

Poult Sci

January 2025

Departamento de Biología Animal, Edafología y Geología, Universidad de La Laguna. Avenida Astrofísico Francisco Sánchez s/n, 38206 La Laguna, Tenerife, Spain.

Poultry can be a sustainable source of eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) through the bioconversion of dietary alpha-linolenic acid (ALA, 18:3n-3). However, this process is currently limited by the high n-6/n-3 ratio in poultry diets affecting the competition between n-6 and n-3 fatty acids (FA) for the same biosynthetic enzymes, and the rate-limiting Δ6 desaturase which act at both, the first and final steps of DHA synthesis pathway. Echium plantagineum oil (EO) is an unusual source of stearidonic acid (SDA, 18:4n-3) which bypasses the first Δ6 desaturase step potentially increasing n-3 long-chain polyunsaturated fatty acids (LC-PUFA) synthesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!