The aim of this study was to reveal acetyl cholinesterase (AchE) and butyryl cholinesterase (BchE) inhibitory activities of Zaleya pentandra. The aerial parts of the plant were air, freeze-dried and powdered. The extraction was carried out with methanol at room temperature for 24 h. The extract was concentrated on rotavapor and fractioned by column chromatography. The isolation and purification afforded amorphous solid which was subjected to physical, chemical and spectroscopic techniques i.e., UV, IR, H-NMR, "C-NMR and HREI-MS for the structure elucidation of the isolated compound. The compound was concluded as "Pentandradione" a novel compound. AchE and BchE inhibitory activities were estimated. The result showed that the isolated extract possessed significant activity against butyryl cholinesterase as compared to standard eserine while the extract lacks acetyl cholinesterase inhibitory activity.

Download full-text PDF

Source

Publication Analysis

Top Keywords

acetyl cholinesterase
12
butyryl cholinesterase
12
inhibitory activities
12
cholinesterase inhibitory
8
activities zaleya
8
zaleya pentandra
8
bche inhibitory
8
cholinesterase
5
cholinesterase butyryl
4
inhibitory
4

Similar Publications

Molecular Signaling Pathways of Quercetin in Alzheimer's Disease: A Promising Arena.

Cell Mol Neurobiol

December 2024

Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt.

Alzheimer's disease (AD) is a neurodegenerative disease characterized by cognitive impairment and memory deficit. Even with extensive research and studies, presently, there is no effective treatment for the management of AD. Besides, most of drugs used in the treatment of AD did not avert the AD neuropathology, and the disease still in a progressive status.

View Article and Find Full Text PDF

Multi-target-directed ligands (MTDLs) represent a promising frontier in tackling the complexity of multifactorial pathologies like Alzheimer's disease (AD). The synergistic inhibition of MAO-B, MAO-A, and AChE is believed to enhance treatment efficacy. A novel coumarin-based molecule substituted with -phenylpiperazine via three- and four-carbon linkers at the 5- and 7-positions, has been identified as an effective MTDL against AD.

View Article and Find Full Text PDF

The growing prevalence of Alzheimer's disease calls for a drug that can simultaneously act towards several targets involved in the pathophysiology of the disease. In our study, we evaluated the potential of hydrazone and -acylhydrazone derivatives of vitamin B6 and pyridine-4-carbaldehyde to be used as multi-target directed ligands targeting cholinergic system by inhibiting acetyl- and butyrylcholinesterase, lowering the accumulation of β-amyloid plaques by inhibiting both the β-secretase activity and amyloid self-aggregation, and maintaining the biometal balance by chelating certain biometals. Our results showed that all of the tested hydrazones were potent inhibitors of human cholinesterases with inhibition constants (i) in micromolar range able to lower the activity of β-secretase, inhibit amyloid aggregation, chelate biometals and act as antioxidants.

View Article and Find Full Text PDF

European honey bee (Apis mellifera L.) is an essential pollinator that contributes significantly to the global ecosystem and agricultural productivity. However, their population has been facing unprecedented threats, primarily due to their exposure to various pesticides, including organophosphates.

View Article and Find Full Text PDF

Cannabidiolic (CBDA) and cannabigerolic (CBGA) acids are naturally occurring compounds from Cannabis sativa plant, previously identified by us as dual PPARα/γ agonists. Since the development of multitarget-directed ligands (MTDL) represents a valuable strategy to alleviate and slow down the progression of multifactorial diseases, we evaluated the potential ability of CBDA and CBGA to also inhibit enzymes involved in the modulation of the cholinergic tone and/or β-amyloid production. A multidisciplinary approach based on computational and biochemical studies was pursued on selected enzymes, followed by behavioral and electrophysiological experiments in an AD mouse model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!