Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Staphylococcal enterotoxin B (SEB) is a potent superantigen produced by Staphylococcus aureus that triggers a strong immune response, characterized by cytokine storm, multi-organ failure, and often death. When inhaled, SEB can cause acute lung injury (ALI) and respiratory failure. In this study, we investigated the effect of resveratrol (RES), a phytoallexin, on SEB-driven ALI and mortality in mice. We used a dual-exposure model of SEB in C3H/HeJ mice, which caused 100% mortality within the first 5 days of exposure, and treatment with RES resulted in 100% survival of these mice up to 10 days post-SEB exposure. RES reduced the inflammatory cytokines in the serum and lungs, as well as T cell infiltration into the lungs caused by SEB. Treatment with RES also caused increased production of transforming growth factor-beta (TGF-β) in the blood and lungs. RES altered the miRNA profile in the immune cells isolated from the lungs. Of these, miR-193a was strongly induced by SEB and was down-regulated by RES treatment. Furthermore, transfection studies and pathway analyses revealed that miR-193a targeted several molecules involved in TGF-β signalling (TGFβ2, TGFβR3) and activation of apoptotic pathways death receptor-6 (DR6). Together, our studies suggest that RES can effectively neutralize SEB-mediated lung injury and mortality through potential regulation of miRNA that promote anti-inflammatory activities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5908132 | PMC |
http://dx.doi.org/10.1111/jcmm.13542 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!