Study on the molecular recognition action of lamivudine by human serum albumin.

J Mol Recognit

Hubei Key Laboratory of Drug Synthesis and Optimization, Jingchu University of Technology, Jingmen, Hubei, People's Republic of China.

Published: July 2018

AI Article Synopsis

Article Abstract

In this work, the interaction of an anti-HIV drug lamivudine and human serum albumin (HSA) was studied by multispectroscopic and molecular modeling methods. The fluorescence emission spectra showed that the fluorescence of HSA was quenched by lamivudine through static mechanism with HSA-lamivudine complex produced at ground state. According to the binding equilibriums observed at 4 different temperatures, the number of binding site, binding constant, enthalpy change, entropy change, and Gibbs free energy change of the interaction were calculated. The results indicated that there was only 1 main binding site under present concentration condition, and then, the location of this binding site was ascertained by molecular probe experiments using warfarin and ibuprofen as site markers. The interaction was a spontaneous and exothermic process. Hydrogen bonds and van der Waals force were the major power that fixed lamivudine on Sudlow's site I in subdomain IIA of HSA molecule. The distance between donor and acceptor was determined by Förster's nonradiative fluorescence resonance energy transfer theory. Circular dichroism spectra exhibited the alteration of HSA's secondary structures. Molecular modeling investigation revealed the structure of HSA-lamivudine complex, including the conformation of lamivudine in binding site, the amino residues close to lamivudine, and the interaction forces between receptor and ligand. The study may be beneficial to therapists in understanding the distribution of lamivudine in vivo and explaining its drug-resistant mechanism in clinical diagnosis.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jmr.2705DOI Listing

Publication Analysis

Top Keywords

binding site
16
lamivudine human
8
human serum
8
serum albumin
8
molecular modeling
8
hsa-lamivudine complex
8
lamivudine
7
binding
6
site
6
study molecular
4

Similar Publications

One key determinant of HIV-1 latency reversal is the activation of the viral long terminal repeat (LTR) by cellular transcription factors such as NF-κB and AP-1. Interestingly, the activity of these two transcription factors can be modulated by glucocorticoid receptors (GRs). Furthermore, the HIV-1 genome contains multiple binding sites for GRs.

View Article and Find Full Text PDF

The Antibody Mediated Prevention (AMP) trials showed that passively infused VRC01, a broadly neutralizing antibody (bNAb) targeting the CD4 binding site (CD4bs) on the HIV-1 envelope protein (Env), protected against neutralization-sensitive viruses. We identified six individuals from the VRC01 treatment arm with multi-lineage breakthrough HIV-1 infections from HVTN703, where one variant was sensitive to VRC01 (IC < 25 ug/mL) but another was resistant. By comparing Env sequences of resistant and sensitive clones from each participant, we identified sites predicted to affect VRC01 neutralization and assessed the effect of their reversion in the VRC01-resistant clone on neutralization sensitivity.

View Article and Find Full Text PDF

Phages demonstrate remarkable promise as antimicrobial agents against antibiotic-resistant bacteria. However, the emergence of phage-resistant strains poses challenges to their effective application. In this paper, we presented the isolation of a phage adaptive mutant that demonstrated enhanced and sustained antibacterial efficacy through the co-evolution of () 111-2 and phage ZX1Δint .

View Article and Find Full Text PDF

Type III clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) systems (type III CRISPR-Cas systems) use guide RNAs to recognize RNA transcripts of foreign genetic elements, which triggers the generation of cyclic oligoadenylate (cOA) second messengers by the Cas10 subunit of the type III effector complex. In turn, cOAs bind and activate ancillary effector proteins to reinforce the host immune response. Type III systems utilize distinct cOAs, including cyclic tri- (cA3), tetra- (cA4) and hexa-adenylates (cA6).

View Article and Find Full Text PDF

The Circumsporozoite Protein (PfCSP) has been used in developing the RTS,S, and R21 malaria vaccines. However, genetic polymorphisms within compromise the effectiveness of the vaccine. Thus, it is essential to continuously assess the genetic diversity of , especially when deploying it across different geographical regions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!