Key Points: Sensory information processing in hippocampal circuits is critical for numerous hippocampus-dependent functions, but the underlying synaptic mechanism remains elusive. We performed whole-cell recording in vivo to examine visually evoked synaptic activity in hippocampal CA1 pyramidal cells (PCs). We first found that at resting potentials, ∼30% of CA1 PCs showed synaptic responses to a flash of visual stimulation. Interestingly, at depolarizing potentials, nearly all CA1 PCs were found to exhibit NMDA receptor-dependent responses, indicating the presence of NMDA receptor-mediated gating of CA1 responses. The NMDA receptor-gated CA1 responses may play important roles in the hippocampal function that depends on sensory information processing.
Abstract: Hippocampal processing of environmental information is critical for hippocampus-dependent brain functions that result from experience-induced hippocampal plasticity, such as memory acquisition and storage. Hippocampal responses to sensory stimulation have been extensively investigated, particularly with respect to spike activity. However, the synaptic mechanism for hippocampal processing of sensory stimulation has been much less understood. Here, we performed in vivo whole-cell recording on hippocampal CA1 pyramidal cells (PCs) from adult rodents to examine CA1 responses to a flash of visual stimulation. We first found in recordings obtained at resting potentials that ∼30% of CA1 PCs exhibited significant excitatory/inhibitory membrane-potential (MP) or membrane-current (MC) responses to the flash stimulus. Remarkably, in the other (∼70%) CA1 PCs, although no responses could be detected at resting potentials, clear excitatory MP or MC responses to the same flash stimulus were observed at depolarizing potentials, and these responses were further found to depend on NMDA receptors. Our findings demonstrate the presence of NMDA receptor-mediated gating of visual responses in hippocampal CA1 neurons, a synaptic mechanism for hippocampal processing of sensory information that may play important roles in hippocampus-dependent functions such as learning and memory.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5978316 | PMC |
http://dx.doi.org/10.1113/JP275094 | DOI Listing |
Cells
January 2025
Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa 3498838, Israel.
Evidence indicates a bidirectional link between depressive symptoms and neuroinflammation. This study evaluated chronic cannabidiol (CBD) treatment effects in male and female rats subjected to the unpredictable chronic mild stress (UCMS) model of depression. We analyzed the gene expression related to neuroinflammation, cannabinoid signaling, estrogen receptors, and specific microRNAs in the ventromedial prefrontal cortex (vmPFC), CA1, and ventral subiculum (VS).
View Article and Find Full Text PDFiScience
January 2025
Department of Neuroscience, Tufts University, Boston, MA 02111, USA.
The disease's trajectory of Alzheimer disease (AD) is associated with and negatively correlated to hippocampal hyperexcitability. Here, we show that during the asymptomatic stage in a knockin (KI) mouse model of Alzheimer disease (APP; APPKI), hippocampal hyperactivity occurs at the synaptic compartment, propagates to the soma, and is manifesting at low frequencies of stimulation. We show that this aberrant excitability is associated with a deficient adenosine tone, an inhibitory neuromodulator, driven by reduced levels of CD39/73 enzymes, responsible for the extracellular ATP-to-adenosine conversion.
View Article and Find Full Text PDFElife
January 2025
Laboratory of Molecular Basis of Behavior, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland.
The ability to extinguish contextual fear in a changing environment is crucial for animal survival. Recent data support the role of the thalamic nucleus reuniens (RE) and its projections to the dorsal hippocampal CA1 area (RE→dCA1) in this process. However, it remains poorly understood how RE impacts dCA1 neurons during contextual fear extinction (CFE).
View Article and Find Full Text PDFBehav Brain Res
January 2025
Laboratorio de Neurobiología, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), San Luis Potosí, Mexico. Electronic address:
Ketamine hydrochloride serves multiple purposes, including its use as a general anesthetic, treatment for depression, and recreational drug. In studies involving rodents, ketamine is utilized as a model for schizophrenia. However, it is unclear whether age affects the behavioral response induced by repeated ketamine administration and if it modifies the expression levels of N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and purinergic receptors (P2X1, P2X4, P2X7).
View Article and Find Full Text PDFExp Neurol
January 2025
Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam UMC, University of Amsterdam, Department of (Neuro) Pathology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands; Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, the Netherlands. Electronic address:
Decreased capillary expression of low-density lipoprotein receptor-related protein 1 (LRP1) has been linked to increased brain amyloid beta (Aβ) accumulation in Alzheimer's disease (AD). Aβ accumulation has also been observed in (a subset of) temporal lobe epilepsy (TLE) patients, suggesting a potential link between epilepsy and AD. This study examines cellular LRP1 expression in human and rat epileptogenic brain tissue to explore LRP1's role in epilepsy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!