Targeting PFKFB3 sensitizes chronic myelogenous leukemia cells to tyrosine kinase inhibitor.

Oncogene

Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, Jiangsu Province, PR China.

Published: May 2018

Resistance to the BCR-ABL tyrosine kinase inhibitor (TKI) remains a challenge for curing the disease in chronic myeloid leukemia (CML) patients as leukemia cells may survive through BCR-ABL kinase activity-independent signal pathways. To gain insight into BCR-ABL kinase activity-independent mechanisms, we performed an initial bioinformatics screen and followed by a quantitative PCR screen of genes that were elevated in CML samples. A total of 33 candidate genes were identified to be highly expressed in TKIs resistant patients. Among those genes, 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3), controlling the limiting step of glycolysis, was found to be strongly associated with TKIs resistance. PFKFB3 knockdown or pharmacological inhibition of its kinase activity markedly enhanced the sensitivity of CML cells to TKIs. Furthermore, pharmacological inhibition of PFKFB3 inhibited CML cells growth and significantly prolonged the survival of both allograft and xenograft CML mice. ChIP-seq data analysis combined with subsequent knockdown experiment showed that the Ets transcription factor PU.1 regulated the elevated expression of PFKFB3 in TKIs-resistant CML cells. Therefore, our results showed that targeting PFKFB3 sensitizes CML cells to TKIs and PFKFB3 may be a potential BCR-ABL kinase activity-independent mechanism in CML.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41388-018-0157-8DOI Listing

Publication Analysis

Top Keywords

cml cells
16
bcr-abl kinase
12
kinase activity-independent
12
targeting pfkfb3
8
pfkfb3 sensitizes
8
leukemia cells
8
tyrosine kinase
8
kinase inhibitor
8
cml
8
pharmacological inhibition
8

Similar Publications

Natural killer (NK) cells have proven to be safe and effective immunotherapies, associated with favorable treatment responses in chronic myeloid leukemia (CML). Augmenting NK cell function with oncological drugs could improve NK cell-based immunotherapies. Here, we used a high-throughput drug screen consisting of over 500 small-molecule compounds to systematically evaluate the effects of oncological drugs on primary NK cells against CML cells.

View Article and Find Full Text PDF

Many oncoproteins are important therapeutic targets because of their critical role in inducing rapid cell proliferation, which represents one of the salient hallmarks of cancer. Chronic Myeloid Leukemia (CML) is a cancer of hematopoietic stem cells that is caused by the oncogene BCR-ABL1. BCR-ABL1 encodes a constitutively active tyrosine kinase protein that leads to the uncontrolled proliferation of myeloid cells, which is a hallmark of CML.

View Article and Find Full Text PDF

Chronic myeloid leukemia and Philadelphia chromosome-positive acute lymphoblastic leukemia patients largely benefit from an expanding tyrosine kinase inhibitors (TKIs) toolbox that has improved the outcome of both diseases. However, TKI success is continuously challenged by mutation-driven acquired resistance and therefore, close monitoring of clonal genetic diversity is necessary to ensure proper clinical management and adequate response to treatment. Here, we report the case of a ponatinib-resistant Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph + ALL) patient harboring a BCR::ABL1 p.

View Article and Find Full Text PDF

Imatinib mesylate (IM) is a first-line therapy for chronic myeloid leukemia (CML) and exhibits good therapeutic effects, but not in all patients with CML owing to drug resistance. Our previous study showed that Cyr61 plays a key role in IM resistance in CML cells. Paeoniflorin (PF) is a bioactive compound isolated from the traditional Chinese medicine Paeonia lactiflora Pall that displays anticancer activity.

View Article and Find Full Text PDF

The most frequent type of leukemia in Africa is chronic myeloid leukemia (CML). The genetic background of the rarer Philadelphia chromosome (Ph) Ph-ve (BCR-ABL-ve) subform of CML is largely unknown in African patients. Therefore, in this study, we aimed to investigate the role of CYP1A1 and 2D6 SNPs in the pathogenesis of Ph-ve CML in the Sudanese population.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!