A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Noninvasive detection of macrophage activation with single-cell resolution through machine learning. | LitMetric

Noninvasive detection of macrophage activation with single-cell resolution through machine learning.

Proc Natl Acad Sci U S A

Biophotonics Laboratory, Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871 Japan;

Published: March 2018

We present a method enabling the noninvasive study of minute cellular changes in response to stimuli, based on the acquisition of multiple parameters through label-free microscopy. The retrieved parameters are related to different attributes of the cell. Morphological variables are extracted from quantitative phase microscopy and autofluorescence images, while molecular indicators are retrieved via Raman spectroscopy. We show that these independent parameters can be used to build a multivariate statistical model based on logistic regression, which we apply to the detection at the single-cell level of macrophage activation induced by lipopolysaccharide (LPS) exposure and compare their respective performance in assessing the individual cellular state. The models generated from either morphology or Raman can reliably and independently detect the activation state of macrophage cells, which is validated by comparison with their cytokine secretion and intracellular expression of molecules related to the immune response. The independent models agree on the degree of activation, showing that the features provide insight into the cellular response heterogeneity. We found that morphological indicators are linked to the phenotype, which is mostly related to downstream effects, making the results obtained with these variables dose-dependent. On the other hand, Raman indicators are representative of upstream intracellular molecular changes related to specific activation pathways. By partially inhibiting the LPS-induced activation using progesterone, we could identify several subpopulations, showing the ability of our approach to identify the effect of LPS activation, specific inhibition of LPS, and also the effect of progesterone alone on macrophage cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5866539PMC
http://dx.doi.org/10.1073/pnas.1711872115DOI Listing

Publication Analysis

Top Keywords

macrophage activation
8
macrophage cells
8
activation
7
noninvasive detection
4
macrophage
4
detection macrophage
4
activation single-cell
4
single-cell resolution
4
resolution machine
4
machine learning
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!