Recycling of valuable metals from secondary resources such as waste Li-ion batteries (LIBs) has recently attracted significant attention due to the depletion of high-grade natural resources and increasing interest in the circular economy of metals. In this article, the sulfuric acid leaching of industrially produced waste LIBs scraps with 23.6% cobalt (Co), 3.6% lithium (Li) and 6.2% copper (Cu) was investigated. The industrially produced LIBs scraps were shown to provide higher Li and Co leaching extractions compared to dissolution of corresponding amount of pure LiCoO. In addition, with the addition of ascorbic acid as reducing agent, copper extraction showed decrease, opposite to Co and Li. Based on this, we propose a new method for the selective leaching of battery metals Co and Li from the industrially crushed LIBs waste at high solid/liquid ratio (S/L) that leaves impurities like Cu in the solid residue. Using ascorbic acid (CHO) as reductant, the optimum conditions for LIBs leaching were found to be T = 80 °C, t = 90 min, [HSO] = 2 M, [CHO] = 0.11 M and S/L = 200 g/L. This resulted in leaching efficiencies of 95.7% for Li and 93.8% for Co, whereas in contrast, Cu extraction was only 0.7%. Consequently, the proposed leaching method produces a pregnant leach solution (PLS) with high Li (7.0 g/L) and Co (44.4 g/L) concentration as well as a leach residue rich in Cu (up to 12 wt%) that is suitable as a feed fraction for primary or secondary copper production.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.wasman.2018.02.052 | DOI Listing |
Waste Manag
December 2024
National Engineering Research Center of Green Recycling for Strategic Metal Resources, Chemistry & Chemical Engineering Data Center, Chinese Academy of Sciences, Institute of Process Engineering, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100190, China. Electronic address:
Recycling of spent lithium-ion batteries has attracted worldwide attention to ensure sustainability of electric vehicle industry. Pretreatment as an essential step for recycling of spent LIBs is critical to ensure the recovery efficiency and quality of black mass which is used for further materials regeneration. Usually, high temperature pyrolysis, at around 600 °C is required during the pretreatment to achieve effective separation of the black mass that is binding on aluminium foils with polyvinylidene fluoride binder.
View Article and Find Full Text PDFSaf Health Work
December 2024
Curtin University of Technology, School of Population Health, Australia.
Background: Exposure to respirable dust (RES) and respirable crystalline silica (RCS) is common in mining operations and is associated with health effects such as pneumoconiosis, chronic obstructive pulmonary disease (COPD), interstitial pulmonary fibrosis, silicosis, lung cancer, and renal disease.
Methods: This study used industry occupational exposure data for respirable dust from two surface lithium mines in Western Australia for the period between 2017 and 2023. A total of 1122 samples were collected in workgroups across four departments - administration and support, mining, crushing and processing, and maintenance.
Materials (Basel)
December 2024
The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok (KMUTNB), Pracharat 1 Road, Bangkok 10800, Thailand.
This study investigates the compressive behavior of aluminum honeycombs partially filled with expanded polystyrene (EPS) foam, emphasizing the effects of filler area fractions and vertex contact locations on energy absorption and crush characteristics. Axial quasi-static compression tests evaluated energy absorption, mean crush force, specific energy absorption, and crush force efficiency. Results revealed that partially filled honeycombs significantly enhance energy absorption and mean crush force compared to their unfilled counterparts.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Institute of Sustainable Building Materials and Engineering Systems, Faculty of Civil and Mechanical Engineering, Riga Technical University, Kipsalas Str. 6A, LV-1048 Riga, Latvia.
Cement-bonded particle boards are gaining popularity globally due to their durability, strength, and, more importantly, environmental sustainability. The increasing demand for these materials has also created the necessity for the sustainable recycling of these materials. In this study, the potential to recycle wood-wool cement board (WWCB) waste into new lightweight insulation biocomposite material was examined.
View Article and Find Full Text PDFAnimals (Basel)
November 2024
Department of Electronics Engineering, Interdisciplinary Graduate Program for BIT Medical Convergence, and Department of Data Science, Kangwon National University, Chuncheon 24341, Republic of Korea.
Effective livestock management has become essential owing to an aging workforce and the growth of large-scale farming operations in the agricultural industry. Conventional monitoring methods, primarily reliant on manual observation, are increasingly reaching their limits, necessitating the development of innovative automated solutions. This study developed a system, termed mixed-ELAN, for real-time sow and piglet behavior detection using an extended ELAN architecture with diverse kernel sizes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!