AI Article Synopsis

  • The study investigates the mechanisms behind generating induced pluripotent stem cells (iPSCs) and emphasizes the role of the JAK/STAT3 signaling pathway in achieving and maintaining naïve pluripotency.
  • Researchers conducted a transcriptome analysis during iPSC induction to uncover specific biological processes affected by JAK/STAT3, including key transcription factors and DNA repair mechanisms.
  • The findings suggest that JAK/STAT3 is crucial not only for proper gene imprinting required for later stages of reprogramming but also for demethylating essential pluripotent genes, offering insights for enhancing iPSC generation in humans and other species.

Article Abstract

Background: The generation of induced pluripotent stem cells (iPSCs) has underdefined mechanisms. In addition, leukemia inhibitory factor (LIF) activated Janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3) pathway is the master regulator for naïve-state pluripotency achievement and maintenance. However, the regulatory process to attain naïve pluripotent iPSCs is not well understood.

Results: We performed transcriptome analysis to dissect the genomic expression during mouse iPSC induction, with or without blocking the JAK/STAT3 activity. We describe JAK/STAT3 signaling-specific biological events such as gametogenesis, meiotic/mitotic cell cycle, and DNA repair, and JAK/STAT3-dependent expression of key transcription factors such as the naïve pluripotency-specific genes, developmental pluripotency associated (Dppa) family, along with histone modifiers and non-coding RNAs in reprogramming. We discover that JAK/STAT3 activity does not affect early phase mesenchymal to epithelial transition (MET) but is necessary for proper imprinting of the Dlk1-Dio3 region, an essential event for pluripotency achievement at late-reprogramming stage. This correlates with the JAK/STAT3-dependent stimulation of Dppa3 and Polycomb repressive complex 2 (PRC2) genes. We further demonstrate that JAK/STAT3 activity is essential for DNA demethylation of pluripotent loci including Oct4, Nanog, and the Dlk1-Dio3 regions. These findings correlate well with the previously identified STAT3 direct targets. We further propose a model of pluripotency achievement regulated by JAK/STAT3 signaling during the reprogramming process.

Conclusions: Our study illustrates novel insights for JAK/STAT3 promoted pluripotency establishment, which are valuable for further improving the naïve-pluripotent iPSC generation across different species including humans.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5840728PMC
http://dx.doi.org/10.1186/s12864-018-4507-2DOI Listing

Publication Analysis

Top Keywords

pluripotency achievement
12
jak/stat3 activity
8
jak/stat3
7
pluripotency
5
jak/stat3 regulated
4
regulated global
4
global gene
4
gene expression
4
expression dynamics
4
dynamics late-stage
4

Similar Publications

Replicating the structural and functional features of native myocardium, particularly its high-density cellular alignment and efficient electrical connectivity, is essential for engineering functional cardiac tissues. Here, novel electrohydrodynamically printed InterPore microfibrous lattices with anisotropic architectures are introduced to promote high-density cellular alignment and enhanced tissue interconnectivity. The interconnected pores in the microfibrous lattice enable dynamic, cell-mediated remodeling of fibrous hydrogels, resulting in continuous, mechanically stable tissue bundles.

View Article and Find Full Text PDF

Engineering Gene and Protein Switches for Regulation of Lineage-Specifying Transcription Factors.

Biotechnol Bioeng

January 2025

Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.

Human pluripotent stem cells (hPSCs) can be differentiated in vitro to an increasing number of mature cell types, presenting significant promise for addressing a wide range of diseases and studying human development. One approach to further enhance stem cell differentiation methods would be to coordinate multiple inducible gene or protein switches to operate simultaneously within the same cell, with minimal cross-interference, to precisely regulate a network of lineage-specifying transcription factors (TFs) to guide cell fate decisions. Therefore, in this study, we designed and tested various mammalian gene and protein switches responsive to clinically safe small-molecule inhibitors of viral proteases.

View Article and Find Full Text PDF

Prime editing (PE) is a CRISPR-based tool for genome engineering that can be applied to generate human induced pluripotent stem cell (hiPSC)-based disease models. PE technology safely introduces point mutations, small insertions, and deletions (indels) into the genome. It uses a Cas9-nickase (nCas9) fused to a reverse transcriptase (RT) as an editor and a PE guide RNA (pegRNA), which introduces the desired edit with great precision without creating double-strand breaks (DSBs).

View Article and Find Full Text PDF

Stargardt disease is a currently untreatable, inherited neurodegenerative disease that leads to macular degeneration and blindness due to loss-of-function mutations in the ABCA4 gene. We have designed a dual adeno-associated viral vector encoding a split-intein adenine base editor to correct the most common mutation in ABCA4 (c.5882G>A, p.

View Article and Find Full Text PDF

Cardiovascular diseases resulting from myocardial infarction (MI) remain a leading cause of death worldwide, imposing a substantial burden on global health systems. Current MI treatments, primarily pharmacological and surgical, do not regenerate lost myocardium, leaving patients at high risk for heart failure. Engineered heart tissue (EHT) offers a promising solution for MI and related cardiac conditions by replenishing myocardial loss.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!