Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Stretchable electronics promise to naturalize the way that we are surrounded by and interact with our devices. Sensors that can stretch and bend furthermore have become increasingly relevant as the technology behind them matures rapidly from lab-based workflows to industrially applicable production principles. Regardless of the specific materials used, creating stretchable conductors involves either the implementation of strain reliefs through insightful geometric patterning, the dispersion of stiff conductive filler in an elastomeric matrix, or the employment of intrinsically stretchable conductive materials. These basic principles however have spawned a myriad of materials systems wherein future application engineers need to find their way. This paper reports a literature study on the spectrum of different approaches towards stretchable electronics, discusses standardization of characteristic tests together with their reports and estimates matureness for industry. Patterned copper foils that are embedded in elastomeric sheets, which are closest to conventional electronic circuits processing, make up one end of the spectrum. Furthest from industry are the more recent circuits based on intrinsically stretchable liquid metals. These show extremely promising results, however, as a technology, liquid metal is not mature enough to be adapted. Printing makes up the transition between both ends, and is also well established on an industrial level, but traditionally not linked to creating electronics. Even though a certain level of maturity was found amongst the approaches that are reviewed herein, industrial adaptation for consumer electronics remains unpredictable without a designated break-through commercial application.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5872954 | PMC |
http://dx.doi.org/10.3390/ma11030375 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!