Adaptive behavior relies on complex neural processing in multiple interacting networks of both motor and sensory systems. One such interaction employs intrinsic neuronal signals, so-called 'corollary discharge' or 'efference copy', that may be used to predict the sensory consequences of a specific behavioral action, thereby enabling self-generated (reafferent) sensory information and extrinsic (exafferent) sensory inflow to be dissociated. Here, by using well-established examples, we seek to identify the distinguishing features of corollary discharge and efference copy within the framework of predictive motor-to-sensory system coordination. We then extend the more general concept of predictive signaling by showing how neural replicas of a particular motor command not only inform sensory pathways in order to gate reafferent stimulation, but can also be used to directly coordinate distinct and otherwise independent behaviors to the original motor task. Moreover, this motor-to-motor pairing may additionally extend to a gating of sensory input to either or both of the coupled systems. The employment of predictive internal signaling in such motor systems coupling and remote sensory input control thus adds to our understanding of how an organism's central nervous system is able to coordinate the activity of multiple and generally disparate motor and sensory circuits in the production of effective behavior.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cub.2018.01.033 | DOI Listing |
Neurology
February 2025
Department of Medicine and Geriatrics, Tuen Mun Hospital, Hong Kong, People's Republic of China.
Background And Objectives: Mitochondrial disorders are multiorgan disorders resulting in significant morbidity and mortality. We aimed to characterize death-associated factors in an international cohort of deceased individuals with mitochondrial disorders.
Methods: This cross-sectional multicenter observational study used data provided by 26 mitochondrial disease centers from 8 countries from January 2022 to March 2023.
PLoS Biol
January 2025
Department of Biology, University of Fribourg, Fribourg, Switzerland.
Food presents a multisensory experience, with visual, taste, and olfactory cues being important in allowing an animal to determine the safety and nutritional value of a given substance. Texture, however, remains a surprisingly unexplored aspect, despite providing key information about the state of the food through properties such as hardness, liquidity, and granularity. Food perception is achieved by specialised sensory neurons, which themselves are defined by the receptor genes they express.
View Article and Find Full Text PDFElife
January 2025
Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, United States.
Sensory experience during developmental critical periods has lifelong consequences for circuit function and behavior, but the molecular and cellular mechanisms through which experience causes these changes are not well understood. The antennal lobe houses synapses between olfactory sensory neurons (OSNs) and downstream projection neurons (PNs) in stereotyped glomeruli. Many glomeruli exhibit structural plasticity in response to early-life odor exposure, indicating a general sensitivity of the fly olfactory circuitry to early sensory experience.
View Article and Find Full Text PDFCell Mol Neurobiol
January 2025
Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China.
Neuropathic pain, a prevalent complication following spinal cord injury (SCI), severely impairs the life quality of patients. No ideal treatment exists due to incomplete knowledge on underlying neural processes. To explore the SCI-induced effect on nociceptive circuits, the protein expression of c-Fos was analyzed as an indicator of neuronal activation in a rat contusion model exhibiting below-level pain.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China.
Steviol glycosides (SGs) are highly valued for their sweetness, safety, and zero calories, but their bitter taste and low solubility limit their application. Modifying glycosyl units is a promising strategy to improve sensory qualities. In this study, we identified the enzyme UGT94E13 through phylogenetic analysis and enzyme screening, which catalyzes the glycosylation of rebaudioside M2 (Reb M2) at the C-13 position, producing the novel β-1,6--glycosylated product rebaudioside M9 (Reb M9).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!